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Preface

This monograph was prepared in response to a request from the
United States Air Force Research Laboratory (AFRL) for a study of
modern decision science that would aid in its planning of research.
The monograph is a selective review touching on a wide range of
topics that we believe are of particular significance and relevance to
the development of decision-support systems. Most of the mono-
graph is broadly applicable.

Most of this research was conducted within RAND Project AIR
FORCE, in its Aerospace Force Development Program, headed by
Edward Harshberger. The monograph also includes some overlapping
research accomplished in a project on high-level decision support
sponsored by the Defense Advanced Research Projects Agency
(DARPA).

Comments are welcome and should be addressed to the project
leader, Paul K. Davis, in RAND’s Santa Monica, CA, office at
Paul_Davis@rand.org.

RAND Project AIR FORCE

RAND Project AIR FORCE (PAF), a division of the RAND Corpo-
ration, is the U.S. Air Force’s federally funded research and develop-
ment center for studies and analyses. PAF provides the Air Force with
independent analyses of policy alternatives affecting the development,
employment, combat readiness, and support of current and future
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aerospace forces. Research is performed in four programs: Aerospace
Force Development; Manpower, Personnel, and Training; Resource
Management; and Strategy and Doctrine.

Additional information about PAF is available on our web site at
http://www.rand.org/paf.
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Summary

Decision science contributes to (1) the understanding of human deci-
sionmaking and (2) the development of methods and tools of analysis
to assist that decisionmaking. This study addresses both components,
albeit selectively, and suggests a number of principles and themes to
be taken into account in work on decision-support systems. We dis-
cuss the decisionmaking component first, and then the analysis com-
ponent. While the discussion applies broadly, we focus on military
decisionmaking and support to it.

The Decisionmaking Component

There is much to report on descriptive, normative, and prescriptive
research on decisionmaking (Chapter Two). Many of the foundations
were laid decades ago in pioneering studies by individuals, groups,
and firms; since the 1970s, we have gained an in-depth understand-
ing of how humans depend upon heuristics that are often apt and
valuable but that can also introduce unintended biases, sometimes
severely undercutting the quality of decisionmaking. Over the past
decade, this body of knowledge has been supplemented by the “natu-
ralistic” school, which notes (and champions) how experts make deci-
sions by exploiting many of the very same wired-in attributes that
trouble those in the heuristics and biases school. A debate now exists
as to the form that decision support should take, with doubts arising




xiv  Implications of Modern Decision Science for Military Decision-Support Systems

about the appropriateness of the “rational analysis paradigm” because
of its unnatural fit with human cognition. Research in this domain
arguably should be achieving a synthesis of knowledge across these
schools. That is just beginning to occur, and this monograph suggests
a number of practical suggestions consistent with such a synthesis
(Chapter Five).

One aspect of synthesis is the recognition that, while command-
ers in the midst of battle will and should depend heavily upon intui-
tion, their intuition can be much improved by peacetime education
and training that has been structured to teach the right lessons, build
the right pattern-matching skills, and debias the decisionmaking
judgment. Traditional analysis can do much to structure that learning
program, even if the techniques used for the learning itself are more
naturalistic.

A second aspect of synthesis is more speculative, but it is clear
from modern research that decision-support systems that rely exclu-
sively on rational-analytic methods are often quite ineffective—even
in what appear to be “analytic settings,” such as peacetime decision-
making in the Pentagon or major commands—because of the cogni-
tive mismatch with the decisions supposedly being supported. It
would seem possible, in some circumstances, to present sound ana-
lytic information in ways that would be effective and would reduce
the propensity to biased judgments. How to do so is a research issue,
but we present a number of initial suggestions in Chapter Five. These
include artful use of “stories” packaged so as to present alternative
perspectives and pros and cons suggested by more analytically struc-
tured work accomplished offline. The routine use of alternative adver-
sary models can be seen as a special case. Other suggestions relate, for
example, to presenting subtle statistical information in graphical ways
that humans grasp quickly. This is not always straightforward, how-

ever, because the available statistical information may not be appro-
priate.
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The Analysis Component

Turning from issues of human cognition and behavior to decisions
themselves, the analysis component of decision science owes much to
a classic period, roughly from the 1950s into the 1970s, during which
the principal concepts of systems analysis and policy analysis were
developed. These included (Chapter Three) early methods such as
“taking a systems approach,” assuring that an appropriately broad
range of strategies is considered; “decision analysis,” with its emphasis
on maximizing expected utility; game theory, which considers the
decisionmaking of adversaries; and cost-benefit analysis. These meth-
ods were accompanied by related tools, such as operations-research
procedures for optimization. Policy analysis extended the scope of
analysis and greatly improved its treatment of relatively soft factors,
such as desires, emotions, and motivations; it also introduced meth-
ods, such as policy scorecards, for relating analytical results.

More recent developments are considered in Chapter Four.
Some were anticipated philosophically early on but have become
practical only with the advent of powerful desktop computing. Oth-
ers represent an evolution of our knowledge about analysis and how
to do it well.

Understanding the System and Related Modeling

One development has been an increased emphasis on building “realis-
tic” models and simulations, including so-called virtual worlds. These
are more than mere analytic constructs designed to capture just
enough about a system to do system analysis; they are attempts to
study, understand, and interact with the real world through models
that have increasingly high fidelity in many respects. We are still in
the early stages of these developments, but experiments with virtual
worlds are becoming a major element of decision support. Good deci-
sion support, however, often needs analytic work at different levels of
detail and from different perspectives. A challenge at the frontier of
decision science is developing well-conceived families of models and
human games that are much more rigorous and mutually informed
than what have been regarded as families of models in the past. These
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matters are discussed briefly in Appendix B. Another major challenge
is learning how to exploit the technology of modern recreational
games, including massively parallel online activities.

Methods for “Out of the Box" Planning

A second development has been new methods to help in the creative
and imaginative aspects of strategic planning. Three such methods are
Uncertainty-Sensitive Planning (USP), Assumption-Based Planning
(ABP), and “Day After . . .” games. Although there are numerous
strategic-planning methods in the community, with distinct names
but highly overlapping functions, we mention these because they are
well documented, and from RAND experience, we know them to be
effective. Successful application of these methods has typically
depended more on art than on science in the past, but with experi-
ence and documentation, they have become increasingly well defined.

Planning Under Uncertainty

The developments noted above have been stimulated by an
enhanced general appreciation for the vast extent of uncertainties
afflicting the planning effort. To a considerable degree, earlier
approaches to analysis underemphasized the uncertainties and
conveyed inappropriate goals of prediction and optimization.

Complex Adaptive Systems. The emergence of the theory of
complex adaptive systems (CAS) has had profound effects on how we
view and model many systems, further increasing our humility about
prediction amid uncertainty. It has sometimes been claimed that CAS
cannot be controlled because of nonlinearities, but that is an over-
statement; such systems may be well behaved in large domains and
essentially unpredictable in others. A challenge, then, is understand-
ing the landscape and finding ways to increase the size of the well-
behaved domains. Viewing problems in this way greatly affects the
form of good analysis. Modern methods and tools for decision sup-
port should be defined accordingly. As an example, displays to a
commander should help him define strategies that are either in safe
zones (e.g., overwhelming force) or in zones with risks that can be at
least mitigated by attention to particular factors (e.g., achieving sur-
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prise, assuring support of local populations, and avoiding collateral
damage that might trigger highly adverse reactions).

Evidential Reasoning. Related to planning under uncertainty is
reasoning under uncertainty. Much cutting-edge work is also being
done on evidential reasoning and related topics relevant to “connect-
ing the dots” correctly. These are only touched upon in this mono-
graph.

Planning for Adaptiveness. Because of the increased apprecia-
tion for uncertainty and the infeasibility of getting plans “right” in
cases where events are simply not very predictable, modern decision
science tends to emphasize planning for adaptiveness (Davis, 2002a).
It is also providing associated methods and tools. These include the
method of exploratory analysis, which forgoes prediction for a broad,
synoptic view of possibilities and a search for flexible, adaptive, and
robust strategies. This represents a paradigm shift in analysis. Various
enabling concepts include multiresolution modeling, the use of families
of models and games, and methods of exploring uncertainty both
parametrically and probabilistically. Agent-based modeling is an impot-
tant new contributor to such modeling, although it is still at an early
stage of development and sometimes is severely lacking in rigor and
transparency. Bayesian-network methods can be quite useful in agent-
based modeling and related risk analysis. More top-down methods
based on hierarchical decision tables are quite different and are useful
in contexts such as providing support to very high-level decisionmak-
ers. Another contributor to adaptive planning is model composability,
which is much more difficult to achieve than software composability
because the meaningfulness of connecting models (as distinct from
whether the connected models “run”) often depends on subtle and
context-dependent assumptions that are evident not at the interfaces
between models, but rather in their interiors (if at all). Thus, model
components cannot be treated as black boxes when considering com-
posability.

Capabilities-Based Planning. A special application of planning
for adaptiveness in the Department of Defense (DoD) context is
capabilities-based planning (CBP). In addition to the methods and
concepts mentioned above, some new methods for CBP include con-
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ceiving programs in terms of mission-capability packages and assessing
effectiveness using mission-system analysis. Both of these constructs
reflect a systems perspective in which operational capability is judged
poorly unless all critical components are in place, including com-
mand and control (C?), training, platforms, weapons, and doctrine.
Traditional models have not been designed to highlight such matters
easily, but decision-support systems should do so. Capabilities-based
planning also requires making choices within a budget; it is not a
blank-check approach. An important new approach to assisting
choice is the use of portfolio-management tools that can illuminate
holes or imbalances in an investment program, encouraging shifts
across what otherwise might be inviolable categories. Such shifts
should reflect both objective and subjective considerations and can
only seldom be based on rigorous calculations. Nonetheless, decisions
can be significantly assisted by such displays. In addition, portfolio-
management tools can assist with marginal analysis or chunky mar-
ginal analysis, in which one may ask about how to spend not the next
dollar but the next billion dollars. Chunky marginal analysis is impor-
tant when some of the alternatives require significant investment
before any return is seen.

Command and Control and Networking. Modern decision sd-
ence is also placing much greater emphasis on C* and the networking
that facilitates it. Older systems analysis and policy analysis were
often structured around units and platforms. Modern work is
increasingly concerned with C* structures, processes, and mechanisms
for adaptation, as well as ubiquitous networks that allow tasks to be
accomplished with resources appropriate to a problem—to a given
time, place, and context. Information science is playing a central role
in all of this, as illustrated by the emphasis on concepts such as shared
information awareness. This modern work involves virtual collabora-
tion and operations of virtual organizations. It is largely in the
domain of information science, but understanding the effects of vir-
tual collaboration (in comparison with face-to-face collaboration) is
very germane to today’s problems.
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Recommendations

Consideration of decisionmaking and analysis of decisions yields a
number of recommendations for the design and practice of decision-
support systems and for further research. Reflecting the synthesis of
rational and intuitive theories of decisionmaking, decision tools
should complement human strengths and counteract weaknesses
through attention to features of the tools themselves, the user-tool
interaction and the tool-use environment, and development of users’
decisionmaking skills. In particular, the user should be able to inter-
act with and personalize the tools at multiple levels.

Decision support should appeal to both the rational-analytic and
the intuitive capabilities of the decisionmaker, with a balance of
“cold” and story-based presentation of analysis and recommenda-
tions. The particular balance should depend on characteristics of the
decision, the decision environment, and the decisionmaker. Deci-
sionmaking is well supported by providing the decisionmaker access
to a variety of advisors and interlocutors. Communication tools that
allow for virtual decisionmaking groups can promote consideration of
alternative views and a healthy skepticism.
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CHAPTER ONE
Introduction

Obijective

This monograph presents a selective survey of modern decision sci-
ence prepared to assist the United States Air Force Research Labora-
tory (AFRL) in planning its research programs and, more specifically,
developing methods and tools for decision support. Our emphasis is
on relatively high-level decisionmaking rather than, say, that of pilots
or intelligence analysts in the midst of real-time operations. We focus
largely on what the military refers to as the strategic and operational
levels. This said, we also draw upon considerable tactical-level
research that has lessons for our work.

Definition and Scope

Definitions are necessary in a study such as this. We take the view
that science is inquiry leading to an organized body of knowledge in a
subject domain. The body of knowledge includes principles and
frameworks. The knowledge is meaningful and transferable, and
claims made about phenomena in the subject domain are, at least in

principle, testable and reproducible. With that prelude,

Decision science contributes both to the understanding of
human decisionmaking and to developing methods and tools to
assist that decisionmaking. The latter branch relates closely to
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understanding what constitutes good decision support' and
how to go about providing it

Figure 1.1 indicates the breakdown that we have used in our
approach to the subject. In addressing human decisionmaking, we
consider research on descriptive, normative, and prescriptive aspects
(how humans actually make decisions, how they perhaps should make
decisions, and how to go about doing so effectively, respectively). We
primarily address individual-level decisionmaking, but we include
some discussion of group processes and collaboration. We largely
consider human decisionmaking, but we touch also upon decision-
making in intelligent machines. In addressing concepts, methods, and

Figure 1.1
Taxonomy of Decision Science for This Study

Decision science

Understanding Understanding needs and
decisionmaking conceiving methods and

tools to help
Process Human and Broad More-specific
intelligent- approaches methods
machine and tools
cognition and
reasoning
RAND MG360-1.1

1'The term decision-support system (DSS) was apparently coined in 1971 in an article that
distinguished among strategic planning, management control, and operational control and

that classified decision problems as highly structured, semistructured, or unstructured (Gorry
and Scott-Morton, 1971).

2 A paper by Wayne Zachary (Zachary, 1998) identifies six generic needs: (1) projecting into
the future despite uncertainty, (2) making tradeoffs among competing attributes or goals, (3)
managing large amounts of information simultaneously, (4) analyzing complex situations
within constraints of time and resources, (5) visualizing and manipulating those visualiza-
tions, and (6) making heuristic judgments, even if they are only qualitative.
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tools, we focus primarily on relatively high-level decisionmaking, and
our scope therefore tends to be associated with strategy, systems
analysis, policy analysis, and choice under uncertainty.

It follows that our discussion omits a great deal that others
might have included. For example, we do not address tactics, details
of military targeting and maneuver, or fine-tuning resource allocation
within a homogeneous domain. Nor do we deal with algorithms,
computational methods, and mathematics such as might be treated in
a review of operations research. Nor do we discuss many important
issues of cognitive psychology, such as the performance of pilots as a
function of cockpit displays. Even with these restrictions of scope,
there is much to cover.

Descriptive Versus Prescriptive Research

In discussions of human decisionmaking, a distinction has often been
made between descriptive and prescriptive research. The situation is
actually more complex, because methods and tools intended for deci-
sion support should be cognitively comfortable for real human deci-
sionmakers. That is not straightforward, because people do not easily
reason in the manner sometimes recommended by economists or
mathematicians. Furthermore, decisionmaking paradigms that once
were thought to be obviously rational and good are not always as
good as advertised, and they can even be dysfunctional. It turns out,
then, that the frontiers of modern decision science include new con-
cepts about what should be prescribed, not just about tools to support
one style of reasoning or another.

Approach in This Monograph

A report surveying the whole of decision science would be very long
and would necessarily duplicate portions of earlier books and articles.
We have chosen to keep the discussion rather brief, to include what
we consider useful citations to the existing literature, and to focus
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primarily on modern concepts and issues with which readers may be
relatively unfamiliar and that have important implications for
research on decision-support and related systems. Chapter Two
describes some of the major findings of recent decades on how real
decisionmakers actually reason and decide. This discussion reflects
the “heuristics and biases” research most associated with Daniel
Kahneman and Amos Tversky, and also loosely defined “naturalistic”
research associated with Gary Klein, Gerd Gigerenzer, and others.
The chapter also draws on research done in management schools by
James March and others. Chapter Three reviews classic concepts of
decision science and aspects of their evolution through the 1980s.
Chapter Four discusses major themes of modern decision science.
These build on the classic concepts but also repudiate the classic over-
emphasis on optimization, particularly in problems characterized by
deep uncertainty. The principal theme is encouraging and assisting
adaptiveness. Chapter Five is a first attempt to reconcile some of the
contradictory strands discussed in Chapter Two and to move toward
a synthesis that might be useful to those involved in analysis and deci-
sion support; it also recapitulates our conclusions and recommen-
dations, including recommendations for research that AFRL might
reasonably pursue and suggestions for terms of reference in the devel-
opment of decision-support systems.

Finally, we note that although much of the monograph is rather
general, our focus is on decision science relevant to military deci-
sionmaking, and many of our examples are accordingly military.



CHAPTER TWO
Human Decisionmaking

This chapter concerns the decision process and what decision science
tells us about how human beings actually make decisions. Our pri-
mary emphasis is on higher-level decisionmaking, but we also draw
upon literature that deals with operational decisionmaking, such as
that by pilots, firemen, or platoon commanders. We do this in part
because the lessons from that research extrapolate to a considerable
extent to the decisionmakers on whom we have focused. We also
emphasize decisionmaking by individuals. Even when decisions are
made by or in groups of people and follow from interpersonal or
social decision processes, the participants employ many of the same
judgment and decisionmaking processes as they do when acting
alone. While in no way a comprehensive treatment of judgment and
decisionmaking, this chapter provides a basis for the subsequent
chapters on analysis methods, as decision support is meaningless with-
out supported decisionmaking.

How to Think About Decisionmaking

If we are to support decisionmaking, and so perhaps to improve it, we
must first understand it. Despite decades of academic study, how best
to think about decisionmaking remains unclear. Figure 2.1 illustrates
this dilemma with four dichotomies taken from a summary work by
James March (March, 1994). Should we see decisionmaking funda-
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Figure 2.1
Dichotomies in Thinking About Decisionmaking

A Basis

Choice-based

>

Rule-based

‘ Characterized by

>

Clarity and Inconsistency
consistency and ambiguity
‘ To be understood as A
Instrumental Interpretive
A Results of A
Autonomous A systemic

actors ecology

RAND MG360-2.1

mentally as choice-based, as in evaluating alternatives, or as rule-
based, as in recognizing the pattern of a situation and responding
appropriately? Should we see the decisionmaking process as one char-
acterized by a search for clarity and consistency or as one in which
inconsistency and ambiguity are not only present but exploited (as in
factions agreeing on an action despite having different objectives in
mind)? Should we understand decisions as fitting into problem solv-
ing and measured by an allegedly objective goodness of outcome, or
do we understand them in more social terms, such as symbols of a
successful negotiation, the reaffirmation of the organization’s ethos,
or a leader’s strength? And, finally, are decisions the result of individ-
ual actors or of more complex systems?

These matters are central to our work, because if we conceive of
decision support strictly in terms of “rational” action (shown on the
left side of Figure 2.1), we relegate our work to that of technical sup-
port. That may provide good information but miss many of the fac-
tors that confront real decisionmakers. On the other hand, if we con-
ceive of decision support purely in terms of facilitating natural human
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processes, we may be denying decisionmakers the opportunity to see
sharply some of the consequences of alternatives, or to see alternatives
at all. Moreover, we might reinforce cognitive biases that generate
what can be seen only as errors.

Decision support has typically focused on what its practitioners
see as the rational-analysis issues, with the expectation that decision-
makers themselves will fill in the other factors. Probably with good
justification, practitioners of decision support have seen worrying
about political factors and other soft consequences as beyond their
ken, or at least beyond their pay grade. Furthermore, the ethic of
much systems analysis and policy analysis has been to present clearly
the more analytical perspective so that policymakers can understand
fully that aspect of the problem, without “contamination” by other,
more political factors, even though the other factors may be legiti-
mate and important to the policymakers in their final decisions. In
this monograph, we have taken a more expansive view of decision
support, moving among extremes of the four dichotomies.

Images of the Decision Process

If we imagine decisionmaking as a relatively orderly process, we can
represent it schematically as shown on the left side of Figure 2.2.
Although this depiction has prominent feedback loops, the image
perceived by many is nonetheless one of linearity. The right side of
Figure 2.2, then, is an alternative depiction emphasizing that the
actual process is anything but linear or orderly. Both versions are syn-
theses of classic depictions and concerns that have too often been
given short shrift, notably the early steps of recognizing that a crisis is
approaching and reviewing the full range of interests at stake, rather
than only the most obvious.!

! The failure to prepare adequately for the 1990 invasion of Kuwait despite strategic warning
illustrates the first problem. It can be argued that the United States and Western European
states did not appreciate the importance of humanitarian considerations in the Balkans until
the news media laid bare the nature of events.
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Figure 2.2
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Subsequent steps—including development of alternatives,
choice of strategy, and the notion of monitoring and adapting—have
long been emphasized. The importance of subsequent adaptation was
perhaps first acknowledged by Nobel Laureate Herbert Simon in his
studies of decisionmaking in the business context and his outright
rejection of then-dominant theories that imagined a more straight-
forward process designed to maximize utility (expected profit). Simon

recognized that high-level decisions are beset by uncertainty and that
any notions of optimizing are inappropriate:

Human behavior, even rational human behavior, is not to be
accounted for by a handful of invariants. . . . Its base mecha-
nisms may be relatively simple . . . but that simplicity operates in

interaction with extremely complex boundary conditions
imposed by the environment.
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With all of these qualifications . . . Man, faced with complexity
beyond his ken, uses his information processing capacities to
seek out alternatives, to resolve uncertainties, and thereby—
sometimes, not always—to find ways of action that are sufficient
unto the day, that satisfice (Simon, 1978, last paragraph).

A more extreme view would be that one should not even imag-
ine optimizing, or doing a full “rational analysis,” but instead should
hope merely to move mostly in the right direction or even to succeed
by “muddling through,” as suggested by Charles Lindblom in a
famous article in the late 1950s (Lindblom, 1995). The Lindblom
view was that, in contrast to the normative version of decisionmak-
ing, in which leaders assemble the options, consider all of the pros
and cons, and make a reasoned judgment, reality more typically is so
complex that comprehensive assessment of nonincremental options is
too difficult and the result is a sequence of more hesitant steps over
time. Later, Lindblom argued as well that issues are often character-
ized by partisan debate and compromise rather than by a more
overall-rational process. Even so, the results can often be good. If
Lindblom’s initial work was pessimistic about doing better than just
muddling through, later work by James Quinn and others suggested
that indeed a firm could do better if it had an adequate vision or
dream—still very far from anything like a blueprint, but strong
enough to result in more than mere muddling. He referred to this
process as logical incrementalism (Quinn, 1980).

The Problems of Heuristics and Biases

Until Simon’s work in the 1950s, it was generally assumed that inso-
far as people engaged in orderly decisionmaking (as shown on the left
sides of Figures 2.1 and 2.2), they were good at it—*“good” being
more or less synonymous with “rational.” Simon took this standard
down a notch with the notion of bounded rationality: In making any
but the simplest decisions, we operate within a complex external envi-
ronment and have limited cognitive capabilities, time, and other
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resources. We therefore are rational only within the bounds imposed
on us (Simon, 1956, 1982a,b).

While Simon sought to bring economic man into conformity
with findings in cognitive psychology, a generation of psychologists
used classical economic principles such as expected-utility maximiza-
tion and Bayesian probability judgments as benchmarks. They then
drew inferences about cognition by observing deviations from those
benchmarks (Camerer, 1995). Nobel Laureate Daniel Kahneman and
the late Amos Tversky conducted the foremost experiments in this
field. Their findings highlight three classes of heuristics, or cognitive
shortcuts, used in making decisions (Tversky and Kahneman, 1974).
The heuristics often work very well, but they can also cause trouble.

The heuristics Kahneman and Tversky highlighted are discussed

below.

Availability Heuristic

The perceived likelihood or frequency of an event increases with the
ease of imagining it. Readily available instances or images are effec-
tively assumed to represent unbiased estimates of statistical probabili-
ties, even when they are not germane. For example, the USSR’s Cold
War assessment of the likelihood of Germany being a renascent mili-
tary threat to its interests was biased by the vivid memory (availabil-
ity) of World War II and the USSR’s casualties in that war (Heuer,
1981). As another example, in assessing an enemy’s behavior, a deci-
sionmaker will often rely on the most available model for decision-
making—his own plans and intentions. Britain based its pre~World
War II estimates of the Luftwaffe’s size on the basis that the “best cri-
teria for judging Germany’s rate of expansion were those that gov-
erned the rate at which the RAF could itself form efficient units”
(Hinsley, Thomas, Ransom, and Knight, 1979).

Representativeness Heuristic

An object is judged to belong to a class according to how well it
resembles that class (i.e., how well the object fits a stereotype of that
class). This heuristic can be especially dangerous in reasoning by his-
torical analogy (Jervis, 1976): “This situation is similar to a previous
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one in some important respects, so we can expect that events will
proceed as they did before.” For example, when policymakers in 1965
decided to deploy tens of thousands more troops in Vietnam, they
had in mind historical analogies of Munich, Dien Bien Phu, and
especially Korea (Khong, 1992). As Ernest May notes, “Potentially,
history is an enormously rich resource for people who govern .
[but] such people draw upon this resource haphazardly or sloppily”
(May, 1973).

Anchoring and Adjustment Heuristic

A judgment is made with an initial value (anchor) in mind and is
adjusted according to new information, but such adjustments are
often too small, so the judgment is overweighted toward the anchor
(even when the anchor is arbitrary). For example, during the Civil
War Battle of Chancellorsville, Union Army General Howard once
received reports early in the day, including one from his superior offi-
cer, that the enemy forces opposite his position were a covering force
for a retreat (Tatarka, 2002). As the day wore on, General Howard
received many reports indicating that enemy forces were in fact
massing for an attack. Nevertheless, having anchored on the initial
reports, he failed to adapt to the new information adequately and his
corps was surprised by a Confederate attack in the evening. The
Union side eventually lost the battle.

People typically use these heuristics to evaluate options, rather
than attempting a complex series of estimates using Bayesian prob-
ability theory and a process of weighing costs and benefits according
to multiattribute utility theory (MAUT). Again, these heuristics are
often quite apt. However, they may result in a panoply of cognitive
biases. Table 2.1 presents a number of examples in one cut at a tax-
onomy.? The examples are elaborated on in subsequent paragraphs,

2 Note some possible confusion over nomenclature: Table 2.1 includes three biases—
availability, representativeness, and anchoring—with the same names as the three classes of
heuristics previously described. These biases may follow from the heuristics of the same
name, but they do not necessarily do so.
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Table 2.1
A Partial Taxonomy of Cognitive Biases
Bias Description
Availability Recent or emotional events are more effectively available or
> retrievable by memory.
g Imaginability Event seems probable because it is easily imagined.
§ Representative-  Event seems more probable if it is representative of its class.
ness
Testimony Recalled details may be logical, coherent, and wrong.
8 |Base rate and Normal occurrence rates may be ignored when one sees what
B | chance appear to be unusual events.
S
8 |Sample size Sample size is often ignored when inferring strength of evi-
e dence.
% Frequencies and  Equivalent data are perceived differently when they are
2 | probabilities expressed in frequencies or probabilities.
£ |Anchoring Assessments are made in relative, rather than absolute terms,
“E’ even if the baseline is arbitrary.
g Conservatism New information is accepted reluctantly or ignored.
T | Regression Events may be overweighted, ignoring likely regression to the
< mean.
Framing Events are seen differently depending on whether they are
c framed as gains or losses.
.2 |False analogy The current problem may be seen to be like a familiar one,
B when it is not.
§ Attribution Information may be unreasonably rejected or accepted if the
o source is disliked or liked, respectively.
® |order First and last items tend to be overweighted.
Scale The perceived variability of data depends on scale.
g [Habit An option may be chosen for its familiarity.
E Attenuation Decisionmaking may be simplified by discounting uncertainty.
“ linconsistency Judgments for identical cases may be inconsistent.
© Completeness Apparently complete data may stop the search.
£ | Confirmation Only confirmatory evidence may be sought, and
3 disconfirmatory evidence may be rejected; inappropriate
= dissonance reduction may occur.
o
V)

lllusion of control A sense of control may be unduly enhanced by good

outcomes obtained for the wrong reasons.
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and some are put into a military context in Appendix A3 In the
aggregate, Tversky and Kahneman found that people are often poor
at estimating probabilities of uncertain events (Tversky and
Kahneman, 1974) and are inconsistent with respect to norms such as
transitivity of preferences, even when given the correct probabilities
(Tversky and Kahneman, 1981). This view of decisionmaking is
sometimes called the heuristics and biases paradigm (HBP).

While much of the experimental work in this area involves inex-
perienced subjects in novel settings, the fundamental results have
been borne out with experts in realistic settings (Camerer, 1995;
Heuer, 1999; Hodgkinson, Brown, Maule, Glaister, and Pearman,
1999; Shafir and LeBoeuf, 2002).

Memory Biases

Selective Recall. Sometimes, we remember and use information
that is either recent (the last option) or otherwise prominent in mem-
oty due to emotional content (e.g., Pear]l Harbor). This bias can be
the result of the availability heuristic, which is often quite valuable.

Imaginability. Participants in tense war games may later ascribe
high plausibility to events of the simulated (and often highly con-
cocted) crisis.

Testimony. People can remember events as much neater, more
logical, and dramatic than they actually were. One alleged conse-
quence is the “recovered memory syndrome,” wherein people recall
detailed accounts of being abused only after psychotherapy to elicit
such accounts (Loftus and Ketcham, 1994).

Naive Statistics Biases

Base Rate. Example: Clinicians place undue faith in positive test
results for rare diseases, ignoring the low base rate of the disease in the

3 As with heuristics, many taxonomies of cognitive biases have been adduced; the one we
present here is an adaptation from Arnott (Arnott, 1998). It is useful for the content and
organization of this monograph, but it is not derived from any particular theory of decision-
making and is not meant to be definitive. Note that these are uzmotivated biases, as distinct
from motivated biases (seeing what one wants to see), socially determined prejudices, or
psychopathologies.
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population and the greater likelihood that the positive result is due to
a testing error.

Sample Size. People are prone to seeing patterns even when the
sample size is insufficient; they may even ascribe greater significance
to the result of a small sample than to that of a large sample. Some-
times the patterns seen are correct, sometimes not.

Frequencies and Probabilities. People may interpret “frequen-
cies” more logically than they do equivalent expressions of probabil-

ity.

Adjustment Biases

Anchoring and Conservatism. When assessing unusualness or
goodness, people are unduly influenced by their baseline, even if the
baseline is known to be arbitrary. This is consistent with conservatism,
a reluctance to change mental models in the face of new information.

Regression to the Mean. Example: Stock-price gains in the
1990s were seen as indicative of a new era, but the bubble burst and
the previous long-term average is being confirmed.

Presentation Biases

Framing. Example: An option is judged differently depending on
whether it is seen as endangering an adequate baseline (betting the
farm) or representing the “only way out.” This is celebrated in pros-
pect theory (Kahneman and Tversky, 1979).

False Analogy. People solve problems by drawing analogies,
which are often quite wrong.

Attribution. Information may be discredited if it is attributed to
someone disliked or overcredited if it is attributed to someone liked.
There is a somewhat different usage of “attribution error” in social
psychology, related to people attributing the cause of events or
behaviors to personal character rather than circumstances.

Order and Scale. Data and options are weighted depending both
on when they are presented and on the scale on which they are

described.
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Choice Biases

Habit. Options may be chosen simply because they are familiar
and therefore deemed to be more reliable. A variant is problems being
discounted because they have been seen before with no disaster occur-
ring.

Attenuation. Decisionmaking may be unduly simplified by dis-
counting and submerging deep uncertainty.

Confidence Biases

Completeness. Once people gain a level of confidence in an
option, they not only cease looking for alternatives but are not open
to them.

Confirmation. Once people have a concept of reality, and per-
haps of a best option, they selectively focus on new information that
confirms their view, while ignoring or rejecting contrary data. They
may also seek to stamp out residual worries (i.e., to reduce disso-
nance). General MacArthur’s unwillingness to “hear” danger signals
before the Chinese invaded North Korea is a good example.

lllusion of Control. A bad choice may lead by chance to a good
outcome, and a good choice may by chance lead to a bad one. When
outcomes are good, they reinforce confidence and the illusion of con-
trol, which may be quite unwarranted.

The Naturalistic School

Although much of the decision literature has followed on the
Kahneman-Tversky issues, that literature has come in for some seri-
ous criticism (Hogarth, 1981; Shanteau, 1989). Heuristics often yield
cost-effective decisions compared with so-called rational processes
that are expensive in terms of both time and mental energy. More-
over, it may not be worth even a modest effort to optimize judgment
at a particular time in a dynamic problem: Changes in the situation
will soon render the judgment obsolete. Some other criticisms con-
cern the research methodology—that researchers demonstrate selec-
tion bias; that they focus on the statistical significance of biases of
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small magnitude; that they use contrived problems in which one
interpretation is deemed normatively correct, ignoring alternative
responses that may be seen as reasonable; that they elicit one-off
judgments of static problem settings; and so on. More fundamentally,
some critics argue that the normative standard of rationality is itself
spurious, so that departures from it are not cause for concern if the
judgmental biases yield outcomes that their bearers are happy with.
Some of these criticisms and a competitive view have also
emerged from the empirical work of Gary Klein and Gerd
Gigerenzer.? Klein has studied expert behavior in high-pressure deci-
sion circumstances (e.g., those of firemen and platoon commanders).
This “naturalistic decisionmaking” (NDM) school® began, as did
work on cognitive biases, by emphasizing its descriptive character.
That is, it sought to describe how people actually behave, not neces-
sarily how they should behave. Members of the school, however, have
grown increasingly vociferous in presenting what they describe as a
full challenger to both the rational-analytic paradigm and the empha-
sis on mitigating cognitive biases. Proponents argue that so-called
cognitive errors reflect valuable heuristics that help humans cope with
massive uncertainty and their own foibles by taking advantage of
environmental clues. The NDM school also argues that many of the
heuristics tend to serve special human strengths, including proactive
problem solving and adaptation. In contrast, they argue, the rational-
analytic methods try to impose a discipline that does not fit well with

4 The degree to which the two camps differ is a matter of ongoing dispute. Kahneman’s
review on the occasion of his Nobel Prize relates many of the criticisms of his and Tversky’s
work (Kahneman, 2002). A heated colloquy between the principals makes for interesting
reading (Gigerenzer, 1996; Kahneman and Tversky, 1996). Chapter Five of this monograph
attempts to provide a synthesis in the service of improving decision support.

5Asa counterpoint to HBP, we will later refer to the tenets of the NDM school as the natu-
ralistic paradigm (NP).

6 These proponents also contend that the commonly recognized heuristics are ill-defined and
specify no underlying mechanism or theory. Gigerenzer likens some of them to Rorschach
inkblots (Gigerenzer, 1998). Gigerenzer’s rhetoric is exaggerated; the reality of the biases is
generally well confirmed. We are much more sympathetic to other aspects of the NDM
school’s arguments, as discussed further in Chapter Five.
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human cognition—one that undercuts natural, effective decision-
making.

Two of the key ideas associated with NDM are that people
assess situations by using prior experience and knowledge and that
situation assessment is more important than option generation. The
effect is rather one of “pattern matching”: People tend to solve an
associated problem in the way that they “know” or “feel” is appropri-
ate to the circumstance. For example, since instances of large classes
or common events are typically easier to recall than their rarer coun-
terparts, the availability heuristic often has considerable practical
value. Indeed, 2// heuristics can enable making reasonable judgments
with a minimum of effort. The resources and effort required to do
marginally, if at all, better are often excessive. In this spirit, evolu-
tionary psychology argues that heuristics have conferred advantages to
those able to make decisions rapidly (Cosmides and Tooby, 1996). A
different way to view the situation is that natural selection yields only
locally optimized behaviors—i.e., better than those of one’s competi-
tors, not the best possible (Simon, 1956).

Significantly, the speed and efficiency of heuristics should not
obscure their sophisticated constituent mental processes, such as pat-
tern matching. Some contend that the “ecological rationality” of heu-
ristics obviates the tradeoff between speed and accuracy—that is, heu-
ristics can be both fast and optimal (Gigerenzer, Todd, and ABC
Research Group, 1999).7

The strong version of NDM theory does not simply dismiss
biases as insignificant or tolerate them as unavoidable side effects of
otherwise valuable heuristics. Rather, it celebrates biases as adaptive
and situation-appropriate, as does the history of scientific progress
writ large. Scientists form hypotheses—often just glorified hunches—
whose proof they pursue vigorously. If the evidence is lacking or dis-
confirming, they typically adapt the hypothesis and tack a revised
course, without dwelling on the prior mismatch between theory and

7 It can be argued that historical military incompetence has often not been decisive, because
of adaptations, but that depending on adaptations may no longer be adequate due to changes
in the nature of war (Johnson, Wrangham, and Rosen, 2002).
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data. Moreover, unless the empirical evidence is compelling, they will
stick with an attractive theory, one that hangs together and provides
an explanation even if some empirical data tend to disconfirm it.?
Scientific inquiry, then, does not always follow the rational-analytic
model. That should cast doubt on the strong version of classical deci-
sion theory, which damns all biases as defects in decisionmaking. The
strongest versions are akin to the fundamentalist approach to statis-
tics, in which one is supposed to allow the data to speak for them-
selves, without contamination from theory. The results are often not
very appealing, especially because they tend to lack explanatory power
beyond the scope of the data.’

In Chapter Five, we further compare, and seek to reconcile the
conflicts between, the heuristics and biases paradigm and the natu-
ralistic school, or at least we begin the process of doing so. Classical
models of decisionmaking, and related decision-support systems,
leave little room for broad general knowledge and more contextual
tacit knowledge and so deprive the decisionmaker of many of the
benefits of experience and learning. Naturalistic models, if zealously
adhered to, can fall victim to false pattern matching and can support
willful deception. A synthesis is needed.

Military and National-Security Operational
Decisionmaking

Decisionmaking theory has been a subject of great interest to political
scientists for decades, and some of the early works on the subject are
still among the best. For the national-security context, generations of
university students have read Allison and Zelikow’s book on the
Cuban missile crisis, the second edition of which is informed by

8 The role of beauty in twentieth-century theoretical physics was very strong. Nobelist
Steven Weinberg writes about this candidly (Weinberg, 1994).

9 Qur point here is closely connected to the theory that says that modeling used in analysis

must generate explanations of events (even “stories”) if it is to be useful (Bigelow and Davis,
2003). This is also a key to model validation.
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sobering post—Cold War discussions among American and Soviet
leaders involved in the crisis (Allison and Zelikow, 1999). The book
is a good antidote to doubts about the role of misperceptions and
their potential consequences. One reads, in particular, about
how—Dbelying American beliefs during and long after the cri-
sis—Soviet forces in Cuba had nuclear weapons and predelegated
authority to use them in the event of an American attack. President
Kennedy’s senior advisors were largely predisposed toward military
action at the outset of the crisis and even took such an outcome for
granted. In the words of Paul Nitze, who was a member of the Execu-
tive Committee (ExComm) of the NSC:

Looking back . . . at the transcripts of the early ExComm discus-
sions, I am struck that many of us considered military action
almost inevitable almost from the outset. As I recall, much of the
discussion about the use of force, especially an invasion of Cuba,
hinged upon whether the Soviets had already deployed nuclear
warheads to the island. We operated on the assumption that it
was unlikely Moscow would take such a risk, but that these
could arrive at any time. As it turned out, at a conference in
1989 on the Cuban Crisis, a Soviet participant revealed that
they had already delivered some warheads, so the possibility of
war had been greater than suspected (Nitze, 1998).

The stakes in decisionmaking are not usually as high as those in
the Cuban missile crisis, but recent events give us many examples in
which the stakes have been considerable, e.g., NATO’s evolving strat-
egy for compellance of Serbia over Kosovo; the decision to project
force into Afghanistan; the decision to invade Iraq; and the political
and operational-level military decisions that led to rapid victory in
major combat there but also contributed to severe instability in the
aftermath. If a crisis ever arises with North Korea, military decisions
about strategy will have profound direct and indirect effects. How
decisions are made matters.

There is a considerable literature on military and security deci-
sionmaking across the spectrum from tactics to grand strategy, and
there is a sizable subset concerned with errors in judgment associated
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with excessive risk taking, or military incompetence (Dixon, 1976).
The role of heuristics and biases has been explored at the highest lev-
els of command (Jervis, Lebow, and Stein, 1985) and, to a lesser
extent, at lower levels (St. John, Callan, and Proctor, 2000), but the
operational level remains largely unexamined—indeed, little has been
written about any aspect of modern operational theory or practice
(Warden, 1989). Judgmental biases are known to be context-
sensitive, and different biases are observed in different conditions, so
we exercise caution in extrapolating from a well-studied domain to a
largely unknown one.

Empirical research on military decisionmaking has focused
almost exclusively on tactical actors and situations, up to the division
command level (Serfaty, MacMillan, Entin, and Entin, 1997). An
extensive research program on naval tactical decisionmaking, spawned
by the USS Vincennes incident, has contributed to understanding its
implications for effective tactical decision support (Morrison, Kelly,
Moore, and Hutchins, 2000). Many retrospective studies of military
operations include detailed accounts of high-level decisions
(Mandeles, Hone, and Terry, 1996) and memoirs from top deci-
sionmakers, but no similarly rigorous observational studies of high-
level operational decisionmaking. General officers’ time is dear, and
they are not likely to be available for laboratory experiments during
actual combat operations. Likewise, decisionmaking researchers are
not given full access to operations centers.

More generally, experts are difficult to study. In addition to
access issues, researchers are challenged to learn enough about the
experts’ fields to judge their performance (Fischhoff, 2002). In prin-
ciple, war games could be designed to serve decisionmaking research
without compromising the games’ objectives, but there has been little
rigorous observation on judgmental biases in operational-level games.
These biases have been identified and studied in lower-level war
games (Serfaty, Entin, and Tenney, 1989). There have also been
some interesting efforts to model operational-level commanders in
simulations (Sokolowski, 2003). Significantly, judgmental biases
should also be reflected in adversary modeling (Barsnick, 2002). The

role of such biases, especially overconfidence, is also discussed in an
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excellent high-level study of commanders’ information needs, which
focuses on the flow of information between commanders and subor-

dinates (Kahan, Worley, and Stasz, 2000).




CHAPTER THREE
Classic Analysis Concepts and Their Evolution

Having reviewed the science on human decisionmaking, let us now
turn to the aspects of decision science relating to analysis.

Depending on the discipline that one studies, the origins of
“decision analysis” or related subjects may be described quite differ-
ently. Some of the strands of what we treat as classic decision science
emerged in such diverse fields as economics, political science, man-
agement science, operations research, and the operational analysis of
World War II. In what follows, we briefly summarize key concepts
from an interdisciplinary perspective. For each concept, we provide
pointers to relevant literature.

Decision Analysis and Game Theory

Decision Analysis and Utilities

The origins of decision science are unclear and ultimately indefinable
because of the multiple streams of work that went on in parallel, but
seminal work on game theory (von Neumann and Morgenstern,
1953) was an important part of the early history—in part, because
von Neumann and Morgenstern sharpened the idea that rational
choice should maximize expected subjective utility. Later books are
much more readable and useful today, except for readers wishing to
go back to the beginnings. Luce and Raiffa published a respected
book in the mid-1950s that is available today in reprint (Luce and
Raiffa, 1989). Raiffa also wrote an excellent primer on decision analy-
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sis in the 1960s that remains a mainstay of many university courses
(Raiffa, 1968). Indeed, even the term “decision analysis,” which logi-
cally covers a wider range of paradigms and methods, has become
synonymous with the relatively narrow methods found in that book
and others that followed. These books all utilize the classic approach
of laying out decision trees, approximating the probabilities associated
with events, assigning utilities to outcomes, and making choices that
maximize expected utility. In a trivial example, suppose that one has
several options that will lead to several outcomes with different prob-
abilities. If U, denotes the utility of option 7, then the expected (or
mean) utility of this option is given by

U, =3 PO)w,,
J

where P(O, ) is the assumed probability that choosing option 7 will
lead to outcome j, and w; is the utility of that outcome.! The classic
prescription is that a “rational choice” is to choose among options (7 =
1, 2, ...) so as to maximize expected utility.2 This makes eminent
sense to an economist thinking about making many bets, some of
which will pay off and some of which will not. It is a very dubious
concept to someone facing a once-in-a-lifetime decision, however,
whether the issue be one of war, finance, or marriage. Nonetheless,
the phrase “rational choice” is often equated to the economist’s con-
cept of maximizing expected utility.?

1 This depiction is usually associated with single-actor decisionmaking in the absence of a
thinking adversary. When an adversary does exist, it is often useful to invoke game theory, as
discussed in the next subsection, rather than assigning probabilities to outcomes as though

they were exogenous. In that approach, the utilities are calculated with, e.g., optimal adver-
sary strategies.

Z Indeed, it can be proven—given a conventional definition of rationality—thar this is the
optimal strategy (von Neumann and Morgenstern, 1953).

3 Even with many betting opportunities, betting so as to maximize expected utility can be
tuinous, because there will sometimes be long strings of events in which the best bet loses
(persistence of bad luck). Unless one’s resources are infinite, at some point the result is bank-
ruptcy. Maximizing expected utility has long been overrated.
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Other decision criteria are often better suited to individuals’ or
organizations’ perceptions of risk, reward, and well-being and their
ability to tolerate losses. It is presumptuous to call them irrational.
For instance, many people place a positive value on avoiding disap-
pointment: The “minimax regret” method entails comparing utilities
with the best possible utility (regret); identifying, for each option, the
maximum possible regret; and choosing the option with the smallest
such maximum regret.# The minimax regret can be reduced even fur-
ther by purchasing insurance against undesirable outcomes.

The basic ideas of decision analysis were greatly extended in the
1970s as multiattribute utility theory (MAUT), the most celebrated
text for which remains that of Keeney and Raiffa (Keeney and Raiffa,
1976). Its simpler methods are so ubiquitous that we seldom think
much about them today; we just use them. For business problems,
the method sometimes makes sense because, ultimately, what matters
is the bottom line in dollars. Various aspects of outcome can be
translated into dollar implications. For example, a reliable work force
means higher productivity, which translates into dollar savings. A
happy and healthy work force may also translate into higher produc-
tivity and dollar savings. Thus, what began as very different kinds of
issues are mapped into a common unit of utility, dollars. As a result,
one might conclude in a given analysis that it would be better to
spend some overthead money on a childcare facility than to save some
money by buying a new piece of equipment, if the savings due to the
working parents having a lower absentee rate were large enough.

As a very different example of multiattribute utility analysis, one
relevant to Air Force analysis, consider a set of aircraft of three very
different types (e.g., F-15E versus A-10 versus F-117A). How much is
the set of aircraft worth? It is common to treat one of them as a stan-
dard (e.g., the F-15E) and to treat the others as “equivalent to” some
multiple of the standard. Thus, the set might comprise ten standard
aircraft, ten aircraft worth only half as much, and three aircraft worth

4 For a discussion of why the criterion of minimax regret can be regarded as morally superior
to maximizing expected utility, see Wit (1997). Although written in the context of social
issues, some of the argument could be applied to national security issues as well.
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twice as much. Overall capability could be roughly characterized by a
score 10(1) + 10(1/2) + 3(2) = 21. That is, the group of 23 aircraft
would be characterized as equivalent to about 21 F-15Es. Obviously,
developing such equivalencies requires thought. In one context, the
basis might be ground vehicles destroyed in interdiction missions. A
given aircraft type’s “equivalency” here would be based on the prod-
uct of its sortie rate and the expected kills per sortie, divided by that
for the F-15E. That might be misleading, however, if avoiding losses
wete sufficiently important. Although it is easy to criticize such scor-
ing methods, they can be quite valuable in many contexts. General
officers, of course, must learn to think in terms of equivalencies be-
cause they need to characterize capabilities of complex forces simply.>

Game Theory

Game theory addresses how “rational” competitors seek to achieve
outcomes reflecting their preferences. The basic concepts include
“utility,” which measures the satisfaction a player derives from some-
thing. This may be strongly influenced by subjective considerations,
such as personal ambitions. It is sometimes assumed that a rational
player, in developing a set of moves (i.e., a strategy), seeks to maxi-
mize the expected value of subjective utility,® but other strategies such
as minimax are common. Developing a detailed strategy requires tak-
ing into account the responses of a rational competitor(s). This can
be relatively simple or difficult, depending on the degree of informa-
tion each player has about the status of the game and the other play-
ers’ utilities. The players may need to deliberately inject some ran-
domness into their moves.

Game theory developed in parallel with the ideas of decision
analysis. Critical early concepts included distinguishing between zero-

3 Use of “equivalent divisions” to characterize a mix of ground forces is an even better mili-
tary example of MAUT because the units may be drastically different with respect to armor,

infantry, and artillery capabilities, or with respect to their abilities for open-area maneuver or
operations in close terrain.

6 This effectively defines “rational” in this context, albeit with a recognized degree of circu-
larity.
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sum and non-zero-sum games, the latter being games in which both
sides can benefit if they adopt suitable strategies. Concepts such as the
Prisoner’s Dilemma, Pareto equilibria, and Nash equilibria have long
been part of the vocabulary of economists and analysts. In recent dec-
ades, game theory has made advances in repeated and sequential
games and in deeper understanding of issues related to cooperation or
noncooperation.

Describing game theory goes far beyond the scope of this mono-
graph and would add little to the voluminous literature that is already
available. Of the many published references, a book by Dixit and
Nalebuff (Dixit and Nalebuff, 1991) is often recommended for its
accessibility to nonspecialist readers and its examples in the social and
political domains. Shorter but respectable accounts can be found
online.”

In preparing this monograph, we also concluded that the most
valuable aspects of game theory for high-level decision support are the
basic concepts and structures found in the earlier works referenced in
the previous subsection. It is rare, especially in higher-level decision-
making, to find problems that can be solved analytically by game the-
ory without doing violence to the problem.8 The ideas and para-
digms, however, have proven powerful. To be sure, determining
which concepts to apply to which problems can be treacherous; a
short discussion in the context of strategic planning is given by
Brandenberger and Nalebuff (Brandenberger and Nalebuff, 1995).

It is not uncommon to find problems, including important mili-
tary problems, in which game-theoretic approaches can be taken
within computer simulations. As an example relevant to the Air
Force, it is well known that simulation outcomes of theater-level con-
flict depend heavily on the tactics used by the combatants, greatly

7 See, e.g., The Stanford Encyclopedia of Philosophy, online at hitp:/plato.stanford.edu/
entries/game-theory.

8 In one example that still rankles, some Cold War game theorists (and military staff in war
games) worked on nuclear-crisis problems by focusing on metrics such as the post-exchange
ratio of nuclear weapons. Had heads of state actually obsessed on such measures, as distinct

from avoiding nuclear war altogether, the world would have been even more dangerous
(Davis, 1989).
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complicating the use of simulations to inform decisions about alter-
native programs. During the Cold War, this was addressed with
game-theoretic algorithms that allowed one to see results if both Red
and Blue sides used their air forces “optimally” (or, at another
extreme, if one or both sides instead followed nominal doctrine). This

greatly reduced the scatter of outcomes and allowed analysts to meas-
ure differences among investment programs.?

Systems Analysis

History and Early References

Major contributions to decision science were made under the rubric
of systems analysis between the 1950s and 1970s, many of them at
RAND in work for the Air Force. The early work was strongly influ-
enced by economists, but subsequent systems analysis has been
undertaken by a diverse collection of scientists, engineers, and opera-
tions researchers. Perhaps the earliest book on the subject is one
edited by Quade (Quade, 1964); a later volume was edited by Quade
and Boucher (Quade and Boucher, 1968), with a still later book
(Miser and Quade, 1988) representing a mature collection of articles
describing not just theory, but also craft issues. A third-edition
updating of earlier Quade books (Quade and Carter, 1989) is a good
single volume for one’s library on systems and policy analysis.!® Since
these classics were written, some of the biggest changes in Air Force
operations have resulted from the emergence of stealth aircraft, preci-
sion weapons, and networking. The first two developments are easily

? Richard Hillestad led such work at RAND, developing the SAGE algorithm used in Air
Force and joint studies in the 1980s. Earlier approximations trace back to the 1960s, when
Lt. General Glenn Kent headed Air Force Studies and Analysis (AFSA) and then-Caprain
Leon Goodson worked on the problem. Later, Brigadier General Goodson headed AFSA.

10 Other older books include one by Francis Hoeber, which has many Air Force examples
(Hoeber, 1981), and one edited by Wayne Hughes, which was developed on behalf of the

Military Operations Research Society (MORS) (Hughes, 1989). It includes a chapter (Friel,
1989) thar discusses Air Force modeling.
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treated with systems analysis; the third is something that systems
analysts are still struggling to deal with well.

Defining Characteristics

Systems analysis is essentially a broad approach, a way of looking at
problems.” A stylized view of systems analysis as a process is sug-
gested in Figure 3.1, based on the early writings (e.g., Quade and

Figure 3.1
The Systems Analysis Process

Problem situation

1

Formulation ——
(conceptualizing problem) I
I
] |
|
Search 1
(research phase) |
I teration
: if necessary
Evaluation 1
(analytic phase) 1
1
|
1
Interpretation I
(judgmental phase) 1
|
1
Verificati I
erification 1
(testing) I éﬂgz’éegnféom
: Boucher, 1968,
———————— Ch.3
i

Conclusions and suggestions

RAND MG360-3.1

! The term “systems analysis” has a very different meaning in software engineering, a mean-
ing completely outside the scope of this report.
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Boucher, 1968). This also relates closely to theories of idealized deci-
sionmaking discussed in early books on the subject. An improved ver-
sion of the decision process was presented in Chapter Two.

From the outset, systems analysis emphasized the importance of

the following:

* Taking a “system perspective”;

Decomposing the system into parts that can be studied sepa-
rately;

Constructing a rich set of alternatives, including some that go
against the grain of conventional wisdom;

Building models to represent the system and the effects on the
system of the various alternatives;

Developing rigorous cost estimates;

Assisting choice, based on explicit criteria.

Discussion

The domains of systems analysis and operations research ovetlap, and
terminology is inconsistent. However, practitioners of systems analy-
sis see it as a higher-level activity that seeks less to “solve” a mathe-
matics problem (as in maximizing some function) than to inform
decisions about what objectives to set (typically a “given” in
operations research), options to be considered, and choices under
uncertainty.?

Systems analysis calls upon game theory, decision analysis, sim-
ple modeling, simulation, and other tools. It addresses uncertainty
explicitly, including uncertainty about planning factors, the enemy,
and the strategic context.’® The earliest well-known systems analysis

12 Tames Schlesinger’s definitions and distinctions, as of 1973, are quoted in Quade and
Carter (1989, p. 26). Schlesinger distinguished between the economic problems of maximi-
zation, subject to control, and choice of the objectives themselves. He saw operations
research as the domain of the former and systems analysis as the domain of the latter.

13 See, e.g., the early discussions of Hitch (1966) and Quade (1966, p. 313), which note
failure to deal with uncertainty well, despite best intentions, as one of the most deadly pitfalls

of systems analysis in practice. Progress on this front is described in Chapter Four of this
monograph.
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study was Albert Wohlstetter’s examination of basing options for the
Air Force, conducted in the 1950s and described briefly in Chapter 3
of Quade’s 1964 book. Systems analysis was moved into the Office of
the Secretary of Defense (OSD) under Robert McNamara in 1961.
Alain Enthoven headed up the new office and later wrote about how
he saw its challenges and accomplishments (Enthoven and Smith,
1971). Although younger readers may be likely to have heard more
criticism of this period than plaudits, the concepts and methods
introduced by Enthoven had profound and laudable effects that per-
sist to this day. One effect was that all of the military services quickly
realized that they needed the capability to do convincing systems
analysis.

The classic reference for the economics of systems analysis in
defense planning also dates back to the 1960s (Hitch and McKean,
1965). Although early systems analysis developed measures of cost-
effectiveness, it was recognized even then that simple approaches to
the subject were fraught with peril. Benefits, for example, may be
numerous and different in kind, not all readily reducible to dollars.
Costs, moreover, can be much more difficult to characterize than one
immediately recognizes. And even in simple systems, it can be diffi-
cult to ensure against double-counting costs or benefits that are cor-
related.

Much more sophisticated treatments of costs and benefits in sys-
tems analysis were developed in subsequent years (e.g., Fisher, 1971).
Some of the ideas seem to slip away from time to time and need to be
rediscovered, probably because organizations have natural tendencies
to avoid some of the analysis required. For example, life-cycle costing
is a fundamental concept, but one that generates a large and visible
price tag that “looks worse” than merely quoting something such as
the flyaway cost of an aircraft. Similarly, organizations distrust use of
present-value costs, which economists often recommend.

Modern Examples

Relatively little military systems analysis is published in the public
domain, for a variety of reasons, only one of which is security classifi-
cation. Some papers are published in the proceedings of confer-
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ences, and some can be found in Military Operations Research Jour-
nal, Defense and Security Analysis, and Journal of Defence Science. For
published work providing case histories relevant to the Air Force, one
might look at a number of studies examining aspects of the interdic-
tion problem (e.g., Frostic, Lewis, and Bowie, 1993; Ochmanek,
Harshberger, Thaler, and Kent, 1998; Davis, McEver, and Wilson,
2002). Wilkening describes an application to ballistic-missile defense
(Wilkening, 1999). A recent paper (Paté-Cornell and Guikema,
2002) describes a systems analysis approach to counterterrorism, and
a book by Matsumura et al. describes a decade’s worth of Army-
oriented analyses based on high-resolution simulation (Matsumura,
Steeb, Gordon, Herbert, Glenn, and Steinberg, 2001). Finally, a
recent text on “smart decisionmaking” (Hammond, Keeney, and

Raiffa, 2002) summarizes many of the classic methods, particularly
for business-world contexts.

Policy Analysis

History and Early References

The concepts and methods described in earlier subsections laid the
basis for policy analysis, which has evolved steadily since the 1970s
and is now a well-defined discipline with a number of degree pro-
grams at major universities.

Policy analysis uses operations research, systems analysis, cost-
benefit analysis, and so on. However, it is broader than these eatlier
disciplines, taking into account political and organizational difficul-
ties associated with both choices and implementation. As with sys-
tems analysis, the word “analysis” here includes not just decomposi-
tion, but the creation of problem-solving alternatives, often the result
of synthesizing across boundaries (see also Quade and Carter, 1989,

14 Examples include the Winter and Summer Simulation Conferences and the ORSA/TIMS
conferences.
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p. 5).5 One of the early influential policy-analysis efforts was the
PAWN study done by RAND for the Netherlands, a large, multiyear
systems study of water-management issues; it is still an excellent case

history (Goeller et al., 1983).

Defining Characteristics

Policy analysis can be defined as the systematic study of the technical
and policy implications of alternative approaches to solving or miti-
gating public problems. It can be understood as a major extension of
systems analysis (Figure 3.2), with a broader scope and a greater
willingness to consider qualitative and otherwise fuzzy concerns.”
Commonly, policy analysis includes”

* Problem definition (something often provided to an operations
researcher, whose task is merely to solve the problem);

* A mix of quantitative and qualitative variables (e.g., effects on
“quality of life”), perhaps evaluated subjectively;

* Qualitative methods such as scenario spinning, operational gam-
ing, and Delphi techniques;8

* Use of policy scorecards in which an option is evaluated by
numerous criteria that may be quite different in character
(“apples and oranges,” such as a policy’s cost, likely effect on the
number of crime incidents in a city per year, and the perceived
equity of the policy among citizens);

15 The work done by the International Institute for Applied Systems Analysis (IIASA) in
Austria is basically the same as what we refer to as policy analysis. Many of its publications
and activities are described on its website, hetp://www.iiasa.ac.at/.

16 The distinctions are, of course, arguable. Some operations rescarchers see their field as
covering systems analysis and even policy analysis. Some policy analysts do what we regard
here as systems analysis or operations research.

17 The need to include such factors was recognized fairly early by some of the pioneers of
systems analysis (see Quade and Boucher, 1968). Nonetheless, these are arguably more typi-
cal of policy analysis than of systems analysis as practiced.

18 These are summarized briefly in Chapter 11 of Quade and Carter (1989). There exists a
large literature on gaming, some of it under the rubric of strategic planning.
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Figure 3.2 .

Relationships Among Operations Research, Systems Analysis, and Policy
Analysis

Inclusion of
soft factors
(including
judgments) Policy analysis
Systems analysis
Operations
research
Comprehensiveness
RAND MG360-3.2

* Aversion to simple-minded cost-effectiveness measures in prefer-
ence to having decisionmakers see diverse attributes of the
options, as is possible with policy scorecards. These may show, for
example, an alternative policy’s cost and likely effects in moving
toward a variety of objectives. In social problems, these might
include, e.g., reducing the incidence of crime and improving the
perceived equity of the policy’s law-enforcement measures
among citizens. In defense work, objectives might correspond to
projected success in a variety of scenarios.?

Discussion

As with decision analysis and systems analysis, some of the key ideas
of policy analysis are ubiquitous in today’s world. Consumer Reports,

19 Early examples of scorecards by Goeller are discussed in Quade and Carter (1989, Ch.
12). Some recent studies (Davis, Kugler, and Hillestad, 1997; Davis, 2002a; Dreyer and
Davis, forthcoming) provide examples in defense planning.
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for example, makes good use of scorecard methods. To be sure, it
usually has a column adding up the different considerations in some
weighted manner, but the consumer sees the entire scorecard, not just
some dubious rollup. Pentagon briefings make heavy use of score-
cards, although quality varies enormously. In good policy analysis,
such charts are rigorous in that one can understand how a given
scorecard cell was evaluated (the criteria for the red/yellow/green col-
ors are explicit) and the logic used for aggregations. For example, an
option may be evaluated by a weighted sum over its attribute values
(a form of decision analysis), or it may be evaluated by its weakest
attribute (Hillestad and Davis, 1998). The latter approach is highly
nonlinear but is also quite appropriate when viewing options for sys-
tems that are no better than their weakest critical component (Davis,
2002a). Some attributes of an option may be judged subjectively,
with no pretense to rigorous quantification, but explicitly nonetheless
(e.g., “Well, you and I differ in our evaluations because I am more
concerned about the future peer threat than about near- and mid-
term rogues”). In some instances, it is possible to aid making subjec-
tive judgments to achieve a degree of consistency in logic and scale.?

It might seem as though the Department of Defense (DoD)
makes heavy use of both systems analysis and policy analysis, and that
is to some extent true. However, there are also some sharp conflicts
between best practices in policy analysis and routine DoD practice
over the years. For example:

* DoD offices often insist on overquantification, even when it
comes at the expense of common sense and reality. A study
report may focus exclusively on measurable differences among
options, even if the measuring depends on dubious models with
even more dubious data, and even if “everyone knows” that
there are other major considerations not being discussed. It is

20 One well-known method for this is the Analytical Hierarchy Process introduced by
Thomas Saaty (Saaty, 1990).
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better practice in policy analysis to have all key considerations
explicit, even if some of them must be evaluated subjectively.?!
Until the advent of effects-based operations (EBO) (Deptula,
2001), Air Force analyses were too often mechanical, focusing
on tons of bombs delivered, rather than on effects achieved—
not just immediate effects, but indirect and cascading effects.
The work was quantitative, “rigorous,” and undertaken with a
systems perspective that considered logistics, combat operations,
air defenses, and so on, but it sometimes fell far short of the
mark when viewed against higher-level objectives.

Modern Examples

Many published studies refer to themselves as policy analysis, but
most may be of little interest to readers of this monograph because
they deal with social or international problems and have relatively
little quantitative or otherwise overtly rigorous methodology reflect-
ing decision science. Some examples of recent RAND policy analyses
that have more of a hard-analysis flavor, while moving also well into

the softer policy-analysis considerations that must be addressed by
defense decisionmakers, are

* A study of ground-force options that demonstrates the short-
comings of overfocusing on airliftable forces and the potential,
with transformed forces, for quick operations from the sea
(Gritton, Davis, Steeb, and Matsumura, 2000);

2L An example recounted by Russell Murray when he was Assistant Secretary of Defense for
Program Analysis and Evaluation arose some years ago when the Marines were considering
the Harrier aircraft, which had notoriously poor range-payload features. Systems analysts
tended to argue that the Marines should instead adopt a fixed-wing aircraft such as the F-18.
That would clearly be more cost-effective in standard missions such as delivering daily tons
of ordnance to targets. The Marines, however, were exceedingly worried about having
assured control of their aircraft, because Marine infantry have little artillery and depend criti-
cally on timely, well-coordinated air strikes for their survival. The last thing the Marines
wanted was to have their aircraft be so similar to other services” aircraft that they might be
used for other missions and not be available when needed. Including that consideration on a
systems-analysis viewgraph would have been unnatural to the quantitatively oriented, but in
policy analysis, doing so would be quite legitimate.
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* A study of rapid-deployment options for the Army, which noted
the need to forward-deploy even brigade-sized units in order to
achieve speed (Vick, Orletsky, Pirnie, and Jones, 2002);

* A policy analysis of command and control problems that
addresses in some depth difficulties associated with organization
and coordination, rather than physics (Hura, McLeod, Mesic,
Sauer, Jacobs, Norton, and Hamilton, 2002);

* A study of ways to apply modern “best practices” to Air Force

supply management (Moore, Baldwin, Camm, and Cook,
2002).

All of these examples use a systems approach, but they vary con-
siderably in the techniques they bring to bear.

Another set of readily available documents illustrating policy
analysis is found on the website of the Congressional Budget Office
(CBO), http://www.cbo.gov. Although some CBO documents are
exclusively focused on economic issues, many are substantial policy
analyses. IIASA also has a great many documents available online, as
well as for purchase. The ITASA documents apply almost exclusively
to social-policy issues.

Summary of Classic Analysis Components of Decision
Science

Table 3.1 summarizes what the classic period identified as key ele-
ments of analysis. The relationships among operations research, sys-
tems analysis, and policy analysis were suggested qualitatively above,
in Figure 3.2. Policy analysis can be seen as a broadening and soften-
ing of systems analysis, which in turn builds upon but broadens
operations research, including some soft factors along the way.
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Table 3.1
Key Tenets of Classic Support to Decisionmaking

Tenet Observation

Taking a “system perspective” May include redefining the problem, tying
issues together that otherwise would be
treated separately, and dealing with
complex interactions.

Recognizing the role of adaptive humans May include game theory or other meth-

or human organizations in the system ods of modeling adaptive behaviors of
competitors.

Decomposition of problems into workable May include classic methods such as

components objectives-to-tasks (also known as
strategies-to-tasks).

Synthesis and innovation in the creation  Mediocre analysts may be good at

of options decomposition, narrow cost-effectiveness,
and burrowing into modules, but the best
analysts are capable also of strategic
thinking, imagination, synthesis, and
innovation.

Assuring a suitably wide range of policy  May include innovative and initially

alternatives unpopular options, as appropriate.

Quantification wherever possible: assure  The need for definition and rigor does not

that variables are well-defined and necessarily imply quantification, which
measurable can sometimes be a diversionary
obsession.
As one component of analysis, one In military problems, this is often useful as
motivated by game theory, consider a limiting case.

maximizing expected subjective utility

Minimax strategies with outcomes that  This is often built into military doctrine as

are least bad across different assumptions taught in staff colleges. It is not obviously

about adversary strategy appropriate in one-time problems.

Realistic, multifaceted cost estimates Life-cycle costing, related uncertainty
analysis.




CHAPTER FOUR
Advanced Decision Science for Analysis

Introduction

Structure of This Chapter
This chapter discusses some advanced features of modern decision
science that contribute to systems and policy analysis. We have cho-
sen items that appear to us to be particularly important and directly
relevant to development of military decision-support systems, and on
which we believe we have something useful to say. We begin by dis-
cussing several broad themes, after which we go into more detail on
methods and enablers. Table 4.1 arrays the topics addressed. The
organization of this chapter reflects the fact that the enablers apply to
different methods and the methods apply to different themes. That is,
much of what we discuss will be cross-cutting.

The broad themes we examine relate to (1) truly understanding
the system under study, (2) dealing with uncertainty, and (3) working
interactively and iteratively with clients.

Understanding the System

Understanding the system under study might seem an odd theme.
Why is it even an issue? There are three reasons, which relate, respec-
tively, to doing a better job in systems and policy analysis, recogniz-
ing that technology now allows us to build increasingly accurate and
valuable virtual worlds, and recognizing that the way in which people
learn about and discuss systems is changing.

39
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Table 4.1
Themes, Methods, and Enablers

Themes

Truly understanding the Dealing with uncertainty =~ Working interactively and
system iteratively with clients and
collaborators

Methods
increase creativity  Enrich system Plan for Organize around
and imagination modeling adaptiveness command and
e System dynamics control and
¢ Complex adaptive networking
system (CAS)
theory
Enablers

Multiresolution Agent-based Modular, com- Decision-support Networked

modelingand  modeling posable systems technology collaboration
families of * Evidential technologies
models and reasoning and

games abduction

» Risk analysis
with Bayesian
methods

¢ Debiasing

Improving the Quality of Higher-Level Analysis. For many
years, systems analysts and policy analysts have been taught that
models are highly simplified representations of some slice of reality
and need be only good enough to be useful for a particular analysis.
The often-quoted maxim is

We Eknow that all models are bad. However, some models
can at least be useful.

Another maxim dear to the hearts of analysts is widely attributed to
Albert Einstein, although we have no original source:

Everything should be made as simple as possible, but not
simpler.
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Such maxims have long been quoted by military analysts using
simple depictions of military combat, depictions such as pure attri-
tion models in which adversary ground or air forces engage in head-
to-head battle and wear each other down, often using a difference-
equation version of Lanchester equations locally in the model.
Analysts have argued that such a model of combat is unrealistic, but it
is useful for understanding force structure issues in the large, such as
whether NATO could get by during the Cold War with its then-
current force structure or needed to have additional ground-force
divisions and air wings. That is, even though the simulated war might
have little to do with real war, it was allegedly useful for measuring
the value of timely mass and firepower. One reason for the claim was
that, for the military campaigns of World War II, western-front out-
comes were indeed dominated by mass. It was a war fought with very
large numbers of troops and sailors, between comparably capable
opponents, and with relatively little art except in the early years of
Blitzkrieg.

One lesson for decision science relating to analysis, arising from
earlier decades of effort, is that the simple models used for many years
are not adequate to support good decisionmaking today. Instead, it is
often necessary to understand the target system and its phenomena in
more depth than might be thought necessary by a hard-charging
analyst taken by the need to keep things simple, top-down, reduc-
tionist, and suitable for economic tradeoffs. Modern developments
have by no means discredited simple, high-level models, but such
models need to be rooted in empirical evidence and good theory or
they will omit or misrepresent important considerations that should
be reflected even in an aggregate-level analysis. To be less abstract,
consider how poorly pure attrition models of ground or air combat
have summarized what happened in campaigns characterized by
maneuver and qualitative considerations, campaigns such as the 1991
Persian Gulf war, the Israel-Syria battle over the Bekaa Valley in
1982, or the recent wars in Afghanistan and Iraq. Not only were the
simple attrition models not good at description, they were also
extremely misleading about resource requirements.
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A key point here is that the problem is not simplicity or aggrega-
tion; the problem is developing the right high-level model for a given
purpose. Simple high-level models may be good, or they may be

insidiously appealing but quite naive. We suggest the following rule
of thumb:’

If analysis is to be accomplished largely at a given level of
detail, then analysts and modelers should thoroughly under-

stand the phenomena to at least one deeper level and recognize
where even more depth is needed.

This seemingly straightforward rule of thumb has major conse-
quences for analysts and those providing decision support. For the
examples above, they include recognizing that the relative capacities
for maneuver and command and control (C?) are first-order consid-
erations that must be represented even in simple, aggregate models.
The question is how to do so. That, in turn, requires understanding
maneuver and C’ in significant detail to be able to develop sound
aggregate approximations of their effects. Although this need has long
been recognized by good analysts, it was once very difficult to do
much about it because of limitations in computers, models, and even
theory.

Models remain imperfect, but aspirations can now be much
higher. In best-practices work, the system in question may be mod-
eled at several levels of detail, with the high-resolution models being
accurate in important respects. For example, entity-level simulations
of ground warfare represent key factors of lethality, vulnerability, ter-
rain masking, maneuver speeds, capabilities for firing accurately at
high speed, and so on. Such simulations can represent line-of-sight
issues in complex urban terrain or detectability issues with semi-

1 A related principle has been championed within operations research (Woolsey and Hewitt,
2003). Good operations research, even if it ultimately employs relatively simple and idealized
mathematics, requires a deep understanding of the actual operations being analyzed. Thus,
analysts should immerse themselves in the relevant organization and its processes before set-

tling on a mathematical approach. That is sometimes in conflict with seeking elegant
mathematics.
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stealthy aircraft and advanced surface-to-air missiles. In air war, high-
resolution models such as BRAWLER can treat factors such as
orientation-dependence of signatures and sensor capabilities, relative
maneuverability, electronic countermeasures, and even pilot capabil-
ity.

So what? How does this affect higher-level models and analysis?
A typical situation is one in which traditional, naive, simple models
assume that the expected value of a function is the function evaluated
at the expected values of its input variables. That is, a computer
model such as TACWAR or THUNDER ordinarily simulates opera-
tions using canonical values of many input variables, values that alleg-
edly correspond to best estimates or most-likely values. If, however,
one studies the underlying phenomena in more detail, one discovers
that “things don’t average out” (Lucas, 2000).

To the contrary, realistic estimates of outcomes may have very
little to do with the canonical values of the input variables. To be less
abstract, suppose that we are interested in the loss rate expected for
stealthy aircraft. The losses probably have nothing to do with what
happens in typical engagements; rather, they reflect the probability of
certain unusual engagements in which the stealth effect is less domi-
nant. If we have realistic high-resolution simulations with appropri-
ately stochastic inputs, we should be able to observe such matters and
construct an appropriate low-resolution model. That might have
sharply different cases corresponding to whether one adversary has a
dominating C* advantage and can therefore avoid the bad engage-
ments (see Appendix B). That C’ factor would not have appeared in
an older, Lanchester-style conception of war.?

2 An analogous issue exists for ground forces. If the attacker can mass his forces and prose-
cute a locally decisive attack before the defender can respond (a C* asymmetry), the effect for
a large theater is roughly like doubling the minimum theater-level force ratio needed for
success (e.g., from 3:1 to something like 1.25:1) (Davis, 1995). Although this phenomenon
was understood qualitatively by systems analysts in the 1970s, analogous phenomena were
ignored. Analyses implicitly assumed that at the tactical level, NATO’s forces would be able
to prevent local breakthroughs. In more-detailed simulations, one could see that results
depended in uncomfortable ways on factors such as range advantages, line of sight, and the
speed of advancing forces (Hillestad, Owens, and Blumenthal, 1995).
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Realism is Now Feasible and Valuable. If in-depth understand-
ing of phenomena is important for getting even high-level depictions
right, it is also important for training, mission rehearsal, operations
planning, and assessment of alternative weapons systems and doc-
trinal concepts. In earlier decades, simulations were not very realistic
in many respects, and there were sharp divides between warfighters
and analysts, with warfighters paying attention to map exercises and
human war games, while analysts crunched numbers believed to be
useful for economic decisions such as determining how much to buy.

Much has changed. Some of today’s high-resolution military
simulations are highly credible for certain purposes. The Army
trained with them before its dramatic successes in the Persian Gulf
war (Neyland, 1997), and participants said that the training was
extremely useful. More generally, today’s command-post exercises
and experiments use a mix of high-resolution simulations and live
play, with the distinctions between simulation and reality shrinking
rapidly.

For the Air Force, one important aspect of modern analytical
work has been demonstrated for some years by the Joint Warfare
Analysis Center; this aspect is described later.

None of this means that models and simulations can reliably
predict outcomes of war, because uncertainties abound, but the need

to apologize for models is decreasing. Perhaps the following is not too
much of an overstatement:

Analysts once had to understand aspects of the real world well
in order to construct models that would fulfill their needs
“adequately.” Today, study of virtual worlds helps us under-
stand the real world and communicate insights to be repre-
sented even in simple models.

Military examples include mission rehearsal and distributed war
gaming, which can be very similar to operational command-post
preparations and, in turn, very similar to real operations with respect
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to C?° The simulations are becoming more and more realistic in
relevant aspects, in some instances even merging with the real world
(Macedonia, 2005).

Modern Computer Gaming and New Ways of Learning and
Experimenting. Another dramatic change related to understanding
the system well is the advent of high-quality commercial war games
played worldwide, sometimes in massive online games with large
numbers of simultaneous participants distributed across the Internet.
Only a few years ago, these were seen by DoD as recreational activi-
ties not particularly relevant to “serious” work. Today, however, the
situation is changing dramatically. One example is the America’s
Army game.* Despite looking like a commercial game and having the
same type of appeal, it incorporates a great deal of realism about tac-
tics, use of weapons, teamwork, and even the value system that the
Army seeks to instill in its troops. The game has stimulated enlist-
ments and is sometimes used by Army personnel in parallel with
“real” training. For example, a soldier who has failed in real training
may prepare for his next attempt by working through corresponding
processes in the computer game. Although most of today’s recrea-
tional war games are at the level of engagements or tactical opera-
tions, this will change as well. One issue is whether today’s youth
(and even older people) can learn better, faster, and with more moti-
vation by using such games than they can in traditional ways. Cur-
rently, the intellectual base for these games is sorely lacking and
would by no means constitute a military science, much less a contri-
bution to decision science. Much potential exists, however. Both the
Defense Advanced Research Projects Agency (DARPA) and the
Defense Science Board have noted the significance of these develop-
ments.

3 The notion that our models represent our knowledge and mechanisms of communication
and are not just analytical tools is discussed in National Research Council, 1997.

4 America’s Army is the official U.S. Army game. Its website is http://www.americasarmy.
com. Conceived and championed by West Point’s Col. Casey Wardynski, it was originally
developed by the MOVES Institute of the Naval Postgraduate School in a project led by
Michael Zyda. The game is now being maintained elsewhere.
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The Problem of Deep Uncertainty

The second theme for modern decision science is the need for a full
appreciation of uncertainty, including deep uncertainty. A good
starting point for understanding many of the methods and tools now
available is the standard text by Morgan and Henrion (Morgan and
Henrion, 1990). To a much greater extent than even in that text,
however, decision science is coming to appreciate the magnitude and
depth of uncertainty that often attend policy problems. One of the
authors of this monograph has written extensively on this in the mili-
tary context (Davis, 1994a, 2002a). The new paradigm here is that

Instead of secking to “predict” effects on a system of various
alternatives and then “optimizing” choice, it may be far better
to recognize that meaningful prediction is often just not in the
cards and that we should instead be seeking strategies that are
[flexible, adaptive, and robust.

The move away from a focus on optimization has roots going
back decades, as discussed in eatlier chapters, but there are related
approaches, methods, and tools of much more recent vintage.s> We

elaborate on these later in the section on the method of planning for
adaptiveness.

Interaction and Iteration

A final theme relating to decision support is developing models and
other analytic tools allowing interactive discussion with both experts
looked to for information and decisionmakers being supported.
Moreover, both research and the operational support of decisionmak-
ers are increasingly making use of capabilities for virtual discussion and
collaboration. A considerable decision science is emerging that tells us
about shortcomings and strengths of such virtual meetings (Wainfan

> The earliest emphasis on “flexible, adaptive, and robust” in defense work was probably that
of Davis and Finch (1993), which was improved upon in a volume on post~Cold War
defense planning (Davis, 1994a,b). Both works reflected ideas developed over the previous
decade (Davis and Winnefeld, 1983). RAND colleagues have emphasized the same ideas in
social-policy work over the past decade (Lempert, Popper, and Bankes, 2003).
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and Davis, 2004). This is of particular interest to the present authors
because of a parallel project on high-level decisionmaking, one rec-
ommendation from which involves reaching out in crisis to distrib-
uted experts, advisers, and “smart people” to broaden and improve
the quality of ideas available when strategies are formulated and cho-
sen.

A Revised Process Model in the Theory of Decision Support

With these observations, Figure 4.1 suggests a revised schematic for
the basic process of system analysis/policy analysis. It starts at the top
by referring to imaginative problem definition, rather than simply
accepting as sufficient the problem posed initially by the client.t It
also adds more emphasis on understanding the system through
exploratory analysis, designing a suitably broad “scenario space” (or

Figure 4.1
A Visualization of Modern Policy Analysis
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scenario space using models,
games, and other interactions
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RAND MG360-4.1

6 This has long been a theme in RAND work, as discussed in a recent book about RAND’s
research organizational issues by Paul Light, who came to know more about RAND’s studies
than most people at RAND do (Light, 2004).
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case space) for that exploration, and interactions—with the client,
but also with experts such as warfighters, who can suggest factors and
strategies to be modeled and supplement model-based analysis with
other aspects of reality. The figure shows the process moving around
a circle to emphasize that it is not at all linear.” Especially when the
goal is to predict effects rather than to optimize choice, the possible
different worlds that can emerge must be considered. This orientation

also takes us even further from the orthodoxy of expected-utility
maximization.

Broad Methods

Against this background of themes, let us now sketch broad, related

methods that are important in modern decision science for analysis.?
As indicated in Figure 4.1, these are

Increase creativity and imaginativeness in thinking about the
problem, as in strategic planning amidst uncertainty;

Enrich systems modeling, using ideas from systems dynamics
and complex adaptive systems (CAS) theory;

* Plan for adaptiveness;

* Organize around C*and around networking.

Increasing Creativity and Imaginativeness in Planning

Figure 4.2 presents another variation of the idealized process of analy-
sis and decisionmaking, one that builds in an emphasis on adaptive-
ness as discussed in more detail below. First, however, note how dif-
ferent in character some of the tasks in Figure 4.2 are. Up front in

7 This figure is also consistent with recent social-policy applications of policy analysis,
including those with multiple actors (van de Riet, 2003).

8 Here and elsewhere, one could ask whether we are reviewing science or art. The answer is,
“a combination.” Indeed, much of “management science” can be considered art. However,

our intention is to focus on points, whether art or science, that have enduring validity and
are not merely current fads of business consultants.
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Figure 4.2
A Revised Process Model of Analysis and Decision
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the process (at the top of the figure), there may be a premium on
fresh, open-minded, and creative thinking about the world and about
possible objectives. In business, this phase is associated with occasional
big-think strategic planning of the sort that may change the nature of
a company in major ways.” In defense, it is associated with the
roughly once-a-decade reviews of national security strategy that may
truly be considered to be addressing “grand strategy.” Usually, the
start of the process need not be so wide open, because fundamentals
are more stable. Nonetheless, it is important to recognize the need for

9 We say “occasional” because organizations seldom find it useful to do this type of “out of

the box” work routinely. Indeed, routinizing strategic planning is seldom successful
(Mintzberg, 1994).
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divergent, creative thinking, followed by a move to convergent high-
level strategy. This need for imagination has been recognized since
the classic period, when methods such as political-military war gam-
ing, Delphi, and scenario spinning were created. However, advance-
ments were made in the 1990s.

One report (Davis and Khalilzad, 1996) reviewed various meth-
ods from commercial practice and RAND experience and categorized
them according to the #pe of planning activity to be supported.

Table 4.2 is abstracted from that study. One of the methods
mentioned, Uncertainty-Sensitive Planning (USP), is particularly
helpful for occasional big-think strategic planning.®® The USP
approach includes identifying branch points and potential shocks
(both positive and negative) and both planning contingent responses
in some detail and developing flexible capabilities to deal with the
shocks for which detailed planning is impractical. Another form of
“out of the box” gaming is valuable at this stage, namely, forcing par-
ticipants to confront plausible bad developments outside their normal
projections and then to think about how to avoid such developments.
The method, used extensively at RAND, is the “Day After . . .” game
introduced by Roger Molander (Millot, Molander, and Wilson,
1993; Molander, Wilson, Mussington, and Mesic, 1998).

Looking further at Figure 4.2, we see activities in which alterna-
tive strategies are framed, developed in some detail, and then tested.
This is a different kind of activity; the initial part may be creative and
synthetic (e.g., based on work using “concept action groups” (Birkler,
Neu, and Kent, 1998)), but later the activity converges on well-
defined strategies and well-defined criteria for assessment. One of the
significant developments of the 1990s was recognition by James
Dewar and the late Carl Builder that testing plans required something
new, the ability to step outside the framework again and to ask deep
questions about assumptions. A broad approach to this challenge,

called Assumption-Based Planning (Dewar, 2002), has been widely
applied.

10 This is discussed more fully elsewhere (Davis, 2003¢c) and was illustrated earlier for the
situation in 1992 (Davis, 1994a).



Table 4.2

Advanced Decision Science for Analysis 51

Different Methods Useful in Defense Planning

Methods Useful in

Product Developing Product Comments

National Uncertainty-Sensitive ~ Open-minded divergent thinking, followed

security Planning (USP) by synthesis. Output can include insights

strategy and  (Davis, 2003c) affecting adaptive planning.

national Alternative futures and Focus is on bringing out alternative images of

military technology forecasts  the future with respect to both the external

strategy (Gordon and environment and the national strategy, and
Nichiporuk, 1993) with respect to technology.

Joint missions
and
operational
objectives

Joint tasks

Operational
concepts

Defense
program
and posture

“Day After ..." games Purposes include thinking the unthinkable,
(Molander et al., 1998) making serious problems vivid, and
conceiving new strategies.

Assumption-Based Encourages creative strategy by critiquing a
Planning baseline and identifying fundamentally
(Dewar, 2002) important but implicit assumptions that could

fail.

Objectives-based Top-down structured analysis. Output is a
planning (strategies-to- taxonomy of well-defined functions to be
tasks) (Kent and accomplished, motivated by national strategy
Ochmanek, 2003) and its priorities and developed for a wide

range of circumstances.

Objectives-based Premium is on translating abstract functions
planning (Kent and into concrete tasks suitable for practical
Simons, 1991) management.

Concept action groups  Premium is on creative but pragmatic work
(Birkler et al., 1998) producing concrete system concepts for
accomplishing the various tasks and missions,
followed by objective tradeoff analyses to
help choose among competitive concepts.

Adaptive planning Assesses programs and postures, for different
{which includes budget levels, against a broad range of
capabilities-based future contingencies (scenario-space analysis)
planning) using and against needs to influence the strategic
strategic portfolio environment and be prepared for strategic
analysis adaptation.

(Davis, 2002a) Objective is to follow a hedged approach
Strategic adaptation in initially and to adapt in particular ways in
complex adaptive response to specified measures of need.

systems (McKelvey, Purpose is to review and amend plans to
1999) better cope with uncertainty.

Assumption-Based Purposes include providing a life-cycle vi

! g a life-cycle view
Planning (Dewar, 2002) 't costs, timing major investments to avoid
Affordability analysis budgetary shocks or temporary losses of
(Stanley, 1994) capability.
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The lower portions of Figure 4.2 and Table 4.2 build in explic-
itly the concept of planning for adaptiveness, which we discuss later
in this chapter, and then such practicalities of planning as objectives-
to-tasks work (also called strategies-to-tasks, and associated largely

with Glenn Kent) and affordability analysis (Stanley, 1994).

Enriching System Modeling

The second broad method involves enriching system modeling. At
least two ways of doing so bear mention here: system dynamics and
the theory of complex adaptive systems.

System Dynamics. System dynamics is a broad approach intro-
duced by MIT’s Jay Forrester in the late 1960s and early 1970s. It
entails defining the system, including feedback loops that comprise
decisions and adaptations, decomposing the system, developing mod-
els for the components, and reassembling—all in the context of sim-
ulations (i.e., modeling that generates predicted behaviors over time).
We did not include it in Chapter Three because it did not fully catch
on during the classic period and was seldom used for decision support
per se. Instead, it was used in high-level studies of industrial plan-
ning, urban planning, and, eventually, global planning. Although sel-
dom discussed by the expositors of classic systems and policy analysis,
Forrester’s was a brilliant pioneering effort that influenced everyone
who actually bothered to read his or his students’ work (Forrester,
1969; Meadows, Randers, and Meadows, 2004). It was Forrester who
got through to many believers in “hard” quantification that to omit a
variable from a model is typically equivalent to assuming that in the
real world, the variable’s effect is zero (i.e., a multiplier of one or an
addition of zero). Forrester also taught effectively that the issue is not
whether or not to model; it is whether to rely upon ill-posed, implicit
mental models or to make them into real ones.

In more recent years, the system dynamics approach has been
extended at MIT and coupled with convenient tools such as iThink
(Sterman, 2000). One need not use the tools of system dynamics to
do this type of work. For example, Analytica has been used in many

such studies, including military analyses (Davis, McEver, and Wilson,
2002).
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Figure 4.3 conveys many of the essential concepts of system
dynamics, which fit well with the virtual-world discussion at the
beginning of this chapter, although system dynamics is usually much
more “analytic” and less visual in character than what we had in mind
there. First, it recognizes that the real world has many unknown
aspects of structure, exhibits dynamic complexity, and includes feed-
back effects that are often delayed. It is often very difficult or even
impossible to conduct controlled experiments on the real world.

Figure 4.3
An Idealized Learning Process Consistent with System Dynamics Concepts
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Thus, we need to create virtual worlds in which we can simulate
system behaviors under controlled conditions. Figure 4.3 is imperfect
for our purposes, because the virtual world obviously can be extended
so that it generates new structures (emergent behavior) and so that
feedbacks, implementation, perception, and so on are imperfect. The
point of the figure, however, is to illustrate how one can systemati-
cally seek to understand the real world through modeling and simula-
tion.

The Theory of Complex Adaptive Systems. The second broad
method is approaching systems as complex adaptive systems (CAS).
Although its roots can be traced back at least to Poincaré, the theory
largely emerged (no pun intended) in the 1980s and early 1990s.
Waldrop’s book (Waldrop, 1992) is a good introduction for a broad
audience; it also helped publicize the work of the Santa Fe Institute,
at which so much of the research has been conducted. Although
many books have been written on the subject, we generally suggest
reading those by the original contributors; some of these works are
technically solid but not very mathematical (Holland and Mimnaugh,
1996; Holland, 1998). Other popular books give their own interest-
ing slants on this exciting new field (Kauffman, 1993; Lewin, 2000).
A short article by Brian Arthur (Arthur, 1999) describes CAS’s rele-
vance to economics. Arthur’s discussion of “increasing returns to
scale” (as distinct from the classic diminishing-returns concept) has
been quite powerful, both in business and in military thinking about
transformation. For early work, Nicolis and Prigogine (1977) is valu-
able but quite technical. A fairly advanced textbook by Bar-Yam (Bar-
Yam, 1997) is available at http://necsi.org/publications/dcs/
index.html.

Key features of CAS are typically described as some or all of the

following;

* Nonlinearity and related sensitivity to initial conditions and
other exogenous events in the course of time;"!

1 Tnterest in CAS theory has led to some misconceptions. Nonlinear systems need not be
uncontrollable, much less chaotic, as evidenced by the complex linear control systems that
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“Nearly decomposable” hierarchies;

* Agents, meta-agents, and adaptation;

* Aggregation and emergent behaviors;
Self-organization and phase transitions;

Flow, open systems, nonequilibrium, and diversity.

Some of these terms may sound like jargon to those unfamiliar with
them, but they are well explained in the sources provided above.

Although the study of CAS is not decision science, modern
study of decision science would do well to adopt the concepts of CAS
theory because decisionmakers are attempting to deal with complex
social systems (including wars) that are, in fact, marvelous examples
of CAS. Failure to do so will often encourage losing strategies, such as
decision-support systems aspiring to accurate prediction. Some
authors have emphasized that subjects of major interest to the mili-
tary, notably effects-based operations (EBO), often need to be
addressed within the CAS paradigm (Davis, 2001; Smith, 2003). A
recent book provides considerable technical rigor in describing the
relationship of CAS concepts to network-centric warfare (Moffat,
2003).

Note that we discuss EBO not as decision science, but as a sub-
ject that needs decision science, including CAS theory. Effects-based
planning (EBP) has usually been discussed in “light” materials rather
than rigorous discussions, but it is having significant effects on the
way military decision problems are approached.”? The terminology
leaves much to be desired, and one may reasonably question whether
there is any new concept involved (great commanders have a/ways

exist in automobiles and dynamically unstable aircraft. As a historical point, Newton’s
renowned equations are nonlinear for most interesting systems, and while Newton himself
saw the universe’s activities in a mechanistic way tied to his religious notions, the nonlineari-
ties of his laws and their consequences were studied by Poincaré.

12 References for EBO and EBP address initial concepts (Deptula, 2001), discussion and
candid review (Davis, 2001; Defense Science Board, 2003), connections to nerwork-centric
operations (Smith, 2003), Air Force applications (McCrabb, 2001), and thinking about the
subject by the U.S. Joint Forces Command (JECOM) (Dubik, 2003).
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planned for effects),? but the effects-based approach has significantly
altered the way some U.S. and NATO military organizations think,
plan, and execute. Moreover, a number of core concepts and methods
give it concreteness and meaning, only some of which are discussed
here. Indeed, some of the most pioneering and rigorous scientific
work was done by the Joint Warfare Analysis Center (JWAC), but
that work is generally not in the public domain. Much of JWAC’s
most notable work deals with the targeting of complex physical sys-
tems, damage to which should be studied with recognition of possible
substitution processes, repair, and recovery. EBO has been extended
philosophically to deal with strategic issues, such as how to approach
coercive bombing of an adversary leader. It can be seen as a higher-
level approach, of which “rapid decisive operations” is another
instance.

We shall elaborate later, so it suffices here to note that the fol-
lowing are highly consistent with the lessons learned from CAS the-
ory:

* Because of nonlinearities and sensitivities, models should sup-
port exploratory analysis, rather than the search for a classic
optimal solution (Davis, Bigelow, and McEver, 2001).
Multiresolution modeling within a given model or simulation,
when accompanied by the inclusion of adaptive agents (e.g.,
decision models representing commanders at different levels),
will often be necessary to capture aspects of learning, adaptation,
self-organization, and phase transitions. This may be achieved in
a single self-contained model or by dynamic compositions
(Davis and Bigelow, 1998).

Dealing with qualitative and sometimes fuzzy factors is often
essential and natural in representing the behavior of agents and
the characteristics of uncertain, open, nonequilibrium systems

(Davis, 2001; Alexander and Ross, 2002).

13 Kent and Ochmanek discuss this with the Air Force in mind (Kent and Ochmanek,
2003).
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Planning for Adaptiveness

Background. In practice, if not in theory, analytic decision sup-
port has often been framed as though the purpose were to choose the
“correct” option. This has sometimes been seen as optimizing or satis-
ficing across multiple, complex objectives, but in both cases it is often
approached as though decisions were once and for all, and as though
sufficient information were available to develop relatively detailed
plans. In reality, however, decisionmakers are often faced with mas-
sive uncertainty as they make choices, those choices are revisited and
modified in subsequent years, the results of plans often turn out to be
significantly different from what was originally expected, and—as a
last straw—the capabilities that are acquired are very often used in
ways different from those originally envisioned. Strategically adaptive
planning is more sensible, as emphasized in recent RAND work
(Lempert, 2002; Lempert, Popper, and Bankes, 2003). De facto
strategy “emerges,” rather than coming about from prescient plan-
ning (Mintzberg, 1994). That notion was presaged, as noted in
Chapter Two, by Lindblom and Quinn, among others.

Unfortunately, mature organizations tend to settle into comfort-
able routines in which strategic planning becomes a rather mechanis-
tic activity populated by repetitive and unimaginative analyses of the
same character, a continuation of past assumptions, and so on. At
some point, the activity becomes a burdensome overhead; and
beyond that, it may become a setious impediment to change.

Within DoD, these tendencies were characterized in the 1980s
and 1990s by what has come to be called threat-based planning (a
misnomer for planning that relied excessively on point scenarios).
The folly was in basing much planning on detailed war scenarios that
were convenient for bureaucracies developing databases and running
big combat models, whereas defense planning was in reality beset by

14 Mintzberg discusses this especially well (Mintzberg, 1994; Mintzberg, Ahlstrand, and
Lampel, 1998). Within DoD, there has long been a related concern that the Planning, Pro-
gramming, and Budgeting System (PPBS) has become ossified. The new system of Planning,
Programming, and Budgeting and Execution (PPBE) is an important reform effort that
moves toward implementation of capabilities-based planning (CBP) (Rumsfeld, 2001).
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deep uncertainties in many dimensions: who would constitute future
threats, what would be the nature of combat operations, what
detailed circumstances would apply at the time, and so on.

Capabilities-Based Planning as a Manifestation of Planning for
Adaptiveness. Over the course of the 1990s, a good deal of thinking
and research went into alternative approaches, one of which was
called planning for adaptiveness (Davis, 1994a; Davis, Gompert, and
Kugler, 1996). Some of the key ideas appeared in the Clinton
administration’s Quadrennial Defense Review (Cohen, 1997), but
they were not backed up with tough choices. In 2001, however, Sec-
retary of Defense Donald Rumsfeld insisted on a fundamental shift to
capabilities-based planning (CBP) (Rumsfeld, 2001), which is
intended to be very much a form of planning for adaptiveness (Davis,
2002a). A variety of briefings are available within DoD (Swett, 2003;
Henry, 2004) describing work by the Office of the Under Secretary
for Policy that is being used as the basis for Office of the Secretary of
Defense (OSD) guidance documents.

Definitions. Official definitions are still evolving within the Pen-
tagon, but one definition is

Capabilities-based planning is planning under uncertainty to
provide capabilities suitable for a wide range of modern-day
challenges and circumstances while working within an eco-
nomic framework that necessitates choice (Davis, 2002a).

In this context, “capabilities” means the general potential or where-
withal.

As so often happens in the English language, there are other
meanings as well. One of the most important arises in a context such
as a general asking, “Yes, that’s fine, Colonel, but do you really have
the capability to . . . if I give the go-ahead?” Here, what is at issue is
whether the colonel and his forces are truly ready and able to do
something, more or less “now.” Having broad potential is not good
enough. To avoid ambiguity, we attach the adjective “operational”
when that meaning is intended. That is, the colonel might respond,
“Yes sir, we have the operational capability; we’re ready and able.” To
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assess operational capability requires, in our view, close attention to
“mission-system analysis” and, in investing, to what are called “mis-
sion-capability packages.”’s

Key Features of Planning for Adaptiveness. Key features of
planning for adaptiveness are

* Goals of flexibility, adaptiveness, and robustness, rather than
optimization;

* An emphasis on modular (building-block) capabilities that are
usable in many ways and on related assembly capability;'

* A focus on the necessity for choice within economic constraints.

In military matters, this is in contrast with, for example, devel-
oping units, equipment, doctrine, and plans designed to do extremely
well in a specific context such as a North Korean invasion of South
Korea, according to standard images of how that would occur.

Exploratory Analysis. A key element of decision support in work
to implement such ideas is assessing options throughout a scenario
space, or case space, in which key assumptions are varied, sometimes
substantially, in accord with the extent of true uncertainty. This is
exploratory analysis, a method designed for broad, synoptic study of a
problem area and related options. It can be considered merely to be
sensitivity analysis done right, but in practice it is so different from
classic sensitivity analysis as to merit a distinct designation. In classic
analysis, one typically has a baseline view of the system, which is
often referred to (improperly) as a best-estimate view. Then one
examines consequences of changing assumptions, one or two at a
time and typically on the margin (e.g., +20 percent). This is valuable
but far from sufficient, especially in problem areas beset by deep

15 The mission-capability package concept has been emphasized by OSD’s David Alberts for
some years (Alberts, Garstka, and Stein, 1999). Mission-system analysis is discussed in Davis
(2002a).

16 For example, assuring that brigades and squadrons are configured and structured so that
they can be deployed and supported independently without leaving other brigades and
squadrons useless for lack of support.
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uncertainty. Many higher-level decision problems are of this type. In
defense planning, for example, there are profound uncertainties about
almost everything that would determine the outcome of the next war:
who the enemy would be, the political-military scenario that initiates
the conflict, the size and capability of the enemy’s forces (typically
some years in the future), the real-world operational capabilities of
one’s own forces, the detailed circumstances of terrain tactics, and so
on. To imagine that defense planning can be accomplished well by
working through a few illustrative scenarios in detail is quite foolish, a
fact that has been recognized with the advent of CBP.

In exploratory analysis, one confronts uncertainties by consider-
ing a broad range of cases and, for each, a broad range of assumptions
in the various dimensions that matter—and does so by varying the
assumptions simultaneously. In this methodology, there is no need to
depend on the baseline case having any particular relationship to a
best estimate. Rather, one thinks in terms of assessing capabilities
over a scenario space (or case space), much as an architect or designer
tests his concepts over a space of use cases and the like. Discussed in
numerous papers (e.g., Davis, 1994a, 2003a), the idea is taking hold
and is reflected in current OSD guidance to the services.?

Although tools for exploratory analysis are still not widely used,
there are some good ones on the market and others in development.
One of the authors of this monograph (Davis) has used Analytica
extensively, after having compared it with a variety of other options
used in the business world for risk analysis (e.g., At Risk and Crystal
Ball, which is a plug-in supplement to Microsoft’s EXCEL that
allows inputs to be represented as probabilistic) and with systems

such as iThink and Extend. All of these have their own advantages
and disadvantages.'®

17 A related broad method is “exploratory modeling,” which has been pursued at RAND by
Steven Bankes (Bankes, 1993), originally more from the viewpoint of a technologist than
thar of an analyst, and then in social-policy analysis (Lempert, Popper, and Bankes, 2003).

18 Documentation exists on Analytica-based milicary applications to Air Force problems in a
joint context (McEver, Davis, and Bigelow, 2000; Davis, McEver, and Wilson, 2002). A
broader discussion of its value in decision support appears in Morgan and Henrion (1990).
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Portfolio-Management Methods. Another important method in
planning for adaptiveness is the use of portfolio-management tech-
niques, the purpose of which is to display for decisionmakers appro-
priate summary views of options for investment and to evaluate how
they contribute to diverse objectives and address diverse classes of
risk. Instead of using something like multiattribute utility analysis,
the portfolio approach urges use of policy-analysis scorecards. 1deally,
these are linked to model-based analysis as well as to reliable data.
Decisionmakers are encouraged to think less about marginal analysis
than about where there are significant gaps or “imbalances” in the
overall program, as viewed against the full range of objectives. “Bal-
ance” here does not mean “equal,” because hedging actions, for
example, may require relatively little money and yet can be quite
important. The idea is to balance risks appropriately across categories.

Portfolio methods can also be used for true marginal analysis,
although most of the hard work needs to be done at staff level
because details matter. Relevant tools are becoming available (e.g.,
Hillestad and Davis, 1998; Davis, 2002a; 2005; Dreyer and Davis,
2005).

Strategic Adaptiveness. Another aspect of planning for adap-
tiveness, which we refer to as planning for strategic adaptiveness, rec-
ognizes that challenges and contexts appear and disappear, that new
technological capabilities arise, and that the course of events over a
period of years is often not readily predictable or plannable. Indeed,
developments sometimes “emerge” in the course of events, without
prior planning.

This does not mean that planning is useless; rather, it means
that an explicit concept in strategic planning should be building in
the flexibility to permit adaptations (even to include the emergence of
substantially new strategies, when needed). This attitude is particu-
larly appropriate when uncertainties are profound.

Such considerations suggest a broad approach in which planners
recognize explicitly that decisions now are not necessarily forever and
that changes will be needed. This can be liberating, because it can
permit decisions that move in what is believed to be the right direc-
tion, without overcommitting. The approach has been applied to the
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policy debate about global warming amidst enormous uncertainty
about technological developments, the actual rate at which global
warming is occurring, and the consequences of the warning
(Lempert, 2002). RAND has also used this approach for the long-
term planning of ballistic-missile defense.?

Military Operational Adaptiveness. Another form of planning
for adaptiveness is exhibited by operational military commanders,
who must continually adapt to unfolding events and new informa-
tion. So also, C* decision-support systems need to accommodate their
varying needs for communication and information processing as cir-
cumstances dictate. To decide and to act, the commander and his
staff need to have a shared image of the battlefield and some degree of
assurance that the image is correct. One RAND study (Kahan,
Wotley, and Stasz, 2000) found three principal modes of information
processing in shared situation assessment: (1) pipeline—one-way
transmission according to set procedures, as in a command-post deci-
sion briefing; (2) @larm—an unusual event or datum trips an alarm
and takes precedence over ongoing communications; and (3)
tree—the commander demands particular information from a vast
base of potential interest. As the authors note:

The need to support the three modes of information exchange
imposes demands on the underlying command-and-control sys-
tem. To support the commander and his staff in all three modes,
the command-and-control system must be able to determine
what information should be sent and when that information
should be sent; it must also be able to query a large and diverse

universe of information (Kahan, Worley, and Stasz, 2000, pp.
50-51).

19 Practicalities often get in the way. Planners, for example, must submit budgets. If they
have in mind adaptations later that might mean cancellation of some program unless it pays
off, or if they have in mind having a stream of funds to be used as appropriate based on
information that comes in, they may well find themselves with many problems: those who
would protect the current program and those looking for “spare money” to be used for other

purposes. Pots of funds for contingencies and adaptations are prime candidates for being
stolen away.
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Planning for adaptiveness, then, is a broad approach with pro-
found significance.

Analogs for Intelligent Machines. Although we can only touch
upon the subject in this monograph, it is significant that researchers
concerned with designing and building intelligent machines, such as
robots, are increasingly emphasizing many of the themes that appear
here. In particular, if machines such as intelligent surveillance plat-
forms, not to mention intelligent #rmed surveillance platforms, are to
have a broad operating domain, they must be adaptive, because it is
not possible to predict all of the circumstances in which they will find
themselves. This arguably leads to requirements for multiresolution
modeling and exploratory analysis so that courses of action will be
robustly effective.®

Organizing Around Command and Control and Related Networking

The advent of network-centric thinking is so important a new devel-
opment as to warrant being considered a broad approach in decision
science. Some might argue that C* has always been central in military
applications of decision science, but that is easily disproved by the
empirical record, which demonstrates that for decades, U.S. analysis
was usually organized around weapons systems, platforms, forces, and
processes of war such as attrition and maneuver. Command and con-
trol was often treated—if at all—as a resource assumed adequate (e.g.,
good communications), as the implicit source of objectives and con-
straints, and as a source of friction to be represented by a few delay
times. This point has long been noted, but it can also be observed
directly by viewing the contents of classic books on systems analysis
(e.g., Quade and Boucher, 1968). That is, the problem ran deep and
affected the implicit “decision science” under which analysts oper-
ated. As a single example, consider a typical Cold War theater-level
combat model. “Strategy” was represented implicitly in the low-level
databases that scripted where various force units would go on which
day and what they would do. Coordination across NATQO’s multi-

20 See, for example, a book by Meystel and Albus discussing research at the National Insti-
tute for Science and Technology (NIST) (Meystel and Albus, 2002).
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national corps sectors was either assumed fine or treated as imperfect
only through the implicit mechanism of low-level databases that did
not allow for certain kinds of reinforcement across sectors. Commu-
nications were not treated; command, control, communications,
computers, intelligence, surveillance, and reconnaissance (C'ISR) was
not considered.

It followed that relatively little U.S. analysis paid much atten-
tion to networking. There were notable exceptions associated with
survivability of strategic nuclear forces and the netting of U.S. tactical
air defenses, but they were definitely exceptions.?

Newer Approaches. Over the past decade, due partly to dra-
matic developments in the civil economy and partly to farsighted
military officers and analysts, a great shift has been under way. It need
not be elaborated in this monograph, but this shift represents a pro-
found change in military science and decision science.

A glimpse of what was to come from the mid-1990s onward was
offered by Admiral William Owens (Owens and Offley, 2000;
Johnson, Owens, and Libicki, 2002). Owens’ theme was suggested by
his book’s title, Lifting the Fog of War. Within DoD, the important
guidance document Joint Vision 2010 emerged in 1996, under Gen-
eral John Shalikashvili and Admiral Owens (Joint Staff, 1996). It
emphasized such now-familiar concepts as precision engagement and
information dominance.

The next wave, which continues, is often discussed under the
rubric of network-centric operations or network-centric warfare. This
broad approach sees information as fundamental and the network
within which information flows as a core capability. Network-centric
thinking has revolutionized some commercial processes and is now
having profound effects within the military. Many discussions are

2L The first network-centric analysis of which we happen to be aware was a 1970s study by
the Institute for Defense Analyses (IDA) on bomber penetration of the Soviet Union. The
IDA analysts were quite concerned that if “merely” the Soviets would learn to net their air
defenses propetly, as seemed straightforward technically, bomber penetration could be far
more difficult than was normally assumed. Similarly, upgraded air-defense systems could be

given some modicum of ballistic-missile defense capability. Fortunately, Soviet networking
developed slowly.
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available (see, for example, Cebrowski and Garstka, 1998; Alberts,
Garstka, and Stein, 1999; National Research Council, 2000; Alberts,
Garstka, Hayes, and Signori, 2001; Alberts and Hayes, 2003).

Why does network-centric operations merit a place in a mono-
graph on decision science? Ultimately, it is because the network-
centric approach may fundamentally change one’s concept of “the
system” and how it works, or can work. Thus, if we think back to the
elements of the analysis process described eatlier, the network-centric
approach greatly affects the conceptualization of issues, the creation
of alternatives, and the analysis of those alternatives. This is a frontier
topic, in part because there continues to be a considerable gap
between those working in the C*ISR domain and those working on,
e.g., analysis of weapons systems, platforms, and force structure.2

Shared Situational Awareness. One of the organizing concepts
in modern decision science has come to be called, in military circles,
shared situational awareness. We do not discuss it here in any depth
because it is presumably well known to readers of this monograph,
but this thrust, along with addressing issues such as sensemaking, is at
the frontiers of decision science—not only (or even in particular) for
military problems, but more generally. Good resources on the subject
can be found on the website of DoD’s Command and Control
Research Program (CCRP). Related issues are, of course, a continu-
ing theme at conferences such as Enabling Technologies for Simulation
Science, within the larger SPIE conferences.

Enablers

A number of methods and tools are necessary to enable the ideas dis-
cussed above. We discuss only a few of them here, but they appear on
many lists generated by workshops trying to identify cutting-edge

2 One exception was an ambitious study on C*ISR options led by Roy Evans of MITRE in
the mid-1990s. Other relevant discussions exist (Alberts, Garstka, Hayes, and Signori, 2001;
Starr, 2003).
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issues (National Research Council, 1997, 2002; Fujimoto,
Lunceford, Page, and Uhrmacher, 2002).

Multiresolution Modeling and Families of Models

It has long been recognized that decisionmakers sometimes need a
broad view, without the confusing clutter of details, and they some-
times need a deep view (Bigelow and Davis, 2003). This is so for
many reasons. First, any good policymaker should be expected to ask
enough penetrating questions to ensure the solidity of the analysis
and recommendations he is receiving. A wartime component com-
mander may ask probing questions of even relatively junior officers as
necessary to gain a sense of their preparation and their mettle. Sec-
ond, policymakers who are actually thinking through alternatives and
making difficult choices need to understand the logic of the alterna-
tives and the logic of the assessments that compare them. That is,
they need to know why one of the options falls apart if the budget
falls below a certain number, or why another is deemed to have great
growth potential. To understand may require going one, two, or mul-
tiple levels deeper. Third, the analysts preparing high-level analyses
with appropriately simple models need to know whether those mod-
els (and their data) are correct, which typically requires understanding
phenomena a level or two deeper.

It follows that there is great value in having families of models so
that questions can be addressed at different levels of detail, somewhat
by analogy with our having hard sciences of engineering-level formu-
las undergirded by thermodynamics and statistical mechanics.?

The theory of multiresolution modeling (also called variable-
resolution modeling), which has advanced considerably in the past
decade, is needed in order to construct good families of models (as
well as individual models with multiple levels of resolution). Some of
the work on multiresolution modeling is relatively theoretical and
addresses phenomenology as well as mathematics (Davis and Bigelow,

1998).

2 This idea has also been discussed to some degree by others (Krause, Christopher, and
Lehman, 2003; Sisti, 2003).
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Other work has looked more at various methods of metamod-
eling, most of which is statistical metamodeling (more in the nature
of operations research or mathematics than of decision science) and
some of which suggests a hybrid approach called motivated metamod-
eling (Davis and Bigelow, 2003).¢ This method urges developing
low-resolution models by first using a theoretical understanding of
phenomena, even if speculative, to motivate the assumed structure
that is built into regressions for testing. It can have significant advan-
tages relative to pure statistical metamodeling.

So much has happened over the past decade or so that going
about building and using families of models requires substantial
rethinking. Appendix B presents a first cut at such rethinking.

Agent-Based Modeling

One of the most troubling features of models used in the early dec-
ades of systems analysis and policy analysis is that they frequently did
violence to the systems treated by not allowing learning, adaptation,
and evolution. In the military domain, this shortcoming was
described as “scripting,” a practice that persists to this day and that
can be made to work well only with considerable diligence on the
part of the analyst. Research in the 1980s on artificial intelligence
yielded a set of methods for building adaptive models, called “agents”
because they often represented human beings or other living organ-
isms. As recently as 1997, agent-based modeling in military work was
discussed largely in future terms (National Research Council, 1997).
In today’s world, there is much less excuse for not including adaptive
behaviors in military models if such adaptation is important. The sci-
ence and technology of agent-based modeling is still advancing rap-
idly, but much already exists (Uhrmacher and Swartout, 2003;
Uhrmacher, Fishwick, and Zeigler, 2001). This research deals
primarily with nonmilitary applications, but the principles are gen-
eral, and there are already some fascinating examples of military

% Many related papers appear in Proceedings of SPIE (e.g., Fall and Plotz, 2001; Haag,
Chou, and Preiss, 2002; Treshansky and McGraw, 2002; Trevisani, Sisti, and Reaper,
2003); some appear in technical reports (Cassandros, 2000). These are merely examples.
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applications, including the use of avatars in research-level training
simulations and the use of agents to represent the behavior of indi-
vidual infantrymen in difficult circumstances (Ilachinski, 2004).
Recent work by the Aerospace Corporation uses the System Effec-
tiveness Analysis Simulation (SEAS) to study Air Force issues, such as
the role and effectiveness of C*ISR systems. There is one very short
paper on the subject (Moore, Gonzales, Matonick, Pernin, and Uy,
2001). Other papers of interest include one using Bayesian-net meth-
ods to infer enemy intent (Santos, 2003), which is a part of work on
multiagent distributed goal satisfaction (MADGS), and one discuss-
ing architecture for agent-based approaches (Jacobi et al., 2003).

Modular Composable Systems

Another enabler is technology for building modular, composable sys-
tems. This is important for achieving flexibility and adaptiveness: As
circumstances arise, one configures a suitable system, drawing upon
composable components. That, however, is easier said than done.
The same is true for building models and simulations that are to be
used flexibly and adaptively. Sophisticated approaches to the devel-
opment of model families and multiresolution capabilities in general
benefit greatly from modular designs and, in some cases, from designs
that permit “composition,” using modules from a variety of sources.
Model composability is a kind of super-modularity that allows modules
to be reused beyond the originator’s work group—perhaps down the
hall, perhaps in another branch of the same organization, perhaps in
another organization altogether, and perhaps even in different fields.
Advocates of composability typically have in mind great savings due
to model reuse and standardization. They envision market mecha-
nisms in which some groups develop modules, which are then offered
to the world and picked up as appropriate. Such a process already
exists for software (Szyperski, 2002).

Unfortunately, composing models and simulations, which matter
so greatly to decision support, is quite a different matter from com-
posing software modules. The central paradigm of software engi-
neering is that modules can be viewed as black boxes that can be
snapped together as long as they have the right interfaces. Models,
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however, are almost always imperfect representations of some seg-
ment of the real world, and they depend on assumptions that are not
nearly as portable as, say, an algorithm for efficiently sorting a list or
an algorithm for efficiently computing square roots. The result is that
those who wish to compose a model from components must #nder-
stand the innards of what to a software engineer would merely be
black boxes. Moreover, this understanding often unveils assumptions
that are inherently context-dependent.

Currently, designing models for composability is not well
understood. Some progress will be made at the level of technology
(e.g., modern mechanisms for incorporating and structuring metadata
to explain a component and its appropriate uses). Other aspects,
however, will require a deep understanding of the subtleties of simu-
lation science and the science of modeling. One such subtlety is that
models ordinarily depend upon implicit context-dependent assump-
tions, whereas many software components are context-independent
(e.g., an algorithm for computing a square root). A recent study
(Davis and Anderson, 2003) addresses the state of model compos-
ability and suggests a way for DoD to move ahead.

Decision-Support Technology

Many of the important enablers relate to the technology for decision
support. We mention the following briefly: (1) evidential reasoning
and abduction, (2) risk analysis, (3) debiasing techniques, and (4)
collaboration technologies.

Evidential Reasoning and Abduction. Much current research in
decision science relates to inferring causes or explanations from lim-
ited data. Recently, this has often been associated with the challenge
of “connecting the dots,” as in anticipating the terrorist attacks of
September 11 from the fragmentary data that were available and, in
retrospect, “should” have been valuable. Abduction is a reasoning
process that proceeds from unusual observations to plausible explana-
tions (i.e., from effects to causes) and so differs from the more famil-
jar deduction and induction. The underlying science on such matters
is being pursued in numerous fields, including law, medicine, artifi-
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cial intelligence, and logic. Researchers sometimes use Bayesian nets,
influence nets, and other technologies.?

Evidential reasoning is an abductive approach that has garnered
considerable interest in the past decade (Yang and Singh, 1994). It
requires decisionmakers to assign a degree of belief to each decision
criterion at different levels of granularity, and it employs the
Dempster-Shafer theory for combining uncertain evidence.® Eviden-
tial reasoning has been applied to a diverse array of engineering and
business management problems and may hold promise for higher-
level decision support. It has been explored in DARPA programs and
others.

Risk Analysis with Bayesian Methods. Although risk analysis is a
classic subject—and is one notch deeper in detail than most of this
monograph—recent years have seen the emergence of some impor-
tant new approaches. Modern desktop computing with tools such as
Analytica and Crystal Ball now makes it possible to do Monte Carlo
analyses with appropriate distribution functions and without having
to make the heroic assumptions that often characterized risk-related
uncertainty analysis in the classic era. On a related topic, a textbook
on risk analysis (Haimes, 1998) describes a systematic way of
addressing risks with long, low-probability “tails,” which were classi-
cally given short shrift; it also discusses how to decompose systems
propetly in order to do risk analysis. This method involves the use of
alternative perspectives, somewhat as in the theory of multiresolution,
multiperspective modeling (MRMPM) (Zeigler, 1984; Davis and
Bigelow, 1998). Although both the Morgan-Henrion and Haimes
books primarily use examples from social problems, the methods are
applicable to military contexts as well.

25 Many related papers are published in the proceedings of the annual Conference on Uncer-
tainty in Arrificial Intelligence (UAI).

2% The Dempster-Shafer theory is one of the principal techniques for treating uncertainty in
artificial intelligence; it allows for quantifying ignorance more readily than conventional
probability theory does, and it is thus especially apt for handling uncertain subjective judg-
ments on multiple attributes (Fagin, Halpern, and Megiddo, 1990).
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Methods that use Bayesian nets and influence nets were also not
very feasible until the advent of modern-day high-speed desktop
computing. Some discussion and citations were included in a recent
study on technology for counterterrorism (National Academy of Sci-
ences, 2002). Related work is ongoing under the sponsorship of
AFRL, DARPA, and other organizations (Rosen and Smith, 1996;
Wagenhals, Shin, and Levis, 2001). Santos, for example, uses
Bayesian-net methods as part of adversary modeling (Santos, 2003).

Debiasing.” The rubric of debiasing refers to two ways of
attempting to use decision-support systems (DSSs) to reduce bias: (1)
correcting for preexisting bias and (2) not inducing new bias. The
term debiasing is also used to mean conditioning the decisionmaker so
as to reduce his propensity to judgmental biases even without the use
of decision aids (Lipshitz, 1983), one of several purposes that war
games may serve (Cohen, 2000).

Origins of Bias. Bias in decisionmaking can stem from the deci-
sionmaker, the decision environment, or a mismatch between them.
In both laboratory experiments and real-life operational decision-
making, problems are often unfamiliar, ambiguously defined, and
complicated by conflicting goals. It is not evident that “life is more
charitable to people than are experimenters” in this respect
(Fischhoff, 1997).2

In many situations DSSs may be able to debias the decision
environment, making it easier to execute a given process, facilitating
the use of a better process already in the decisionmaker’s repertoire,
or providing an information structure that works better with the
process already in use (Klayman and Brown, 1993). A number of
experimental debiasing systems are described in the literature, but
none appear to be in active, wide use (Arnott, 2002).

% For a deeper exploration of some debiasing issues, see Appendix C.

2 Although the heuristics and biases paradigm (HBP) is sometimes criticized for the artifici-
ality of its experiments, it is perhaps not accidental that some of the most significant work on

debiasing strategies has come from experimental psychologists conducting laboratory studies
(Fischhoff, 2002).
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Decision aids can also counteract the adverse effects of judg-
mental biases by allowing the user to employ heuristics but warning
of the likely biases, and by anticipating likely use of heuristics and
providing information that offsets the effects of such use.?? But DSS
designers must recognize that decision aids can themselves introduce
biases. For example, the manner in which decision problems are
framed, such as whether outcomes are represented as gains or losses,
influences the choices that are made (Kuehberger, 1998). Prospect
theory holds that decisionmakers tend to be risk-averse with respect
to gains but risk-loving with respect to losses (Kahneman and
Tversky, 1979); it is a powetful framework for explaining risky high-
level operational (Schultz, 1997) and national-strategic decisions
(Levy, 2003). Decision-support systems that frame options for the
user or even present, say, a neutrally phrased checklist for his consid-
eration may thereby bias decisions, even if no weights are implied.

Making Conformation Biases Worse. Decision aids that incor-
porate user-driven database or knowledge-base searches may reinforce
confirmation biases, which stem from a decisionmaker’s tendency to
search for information that supports a preestablished hypothesis
(Skov and Sherman, 1986) and to ignore rebutting information that
may arise (Mynatt, Doherty, and Tweney, 1978). Some maintain
that senior military commanders and politico-military leaders may be
especially prone to such judgmental biases, due to selection bias in
intellectual characteristics and to organizational forces (Dixon, 1976),
but this view runs counter to contemporary findings (Wrangham,
1999).

Aids That Teach Minimax Are Biased. Operational course-of-
action (COA) analysis that characterizes a COA by the nominal out-
come expected if the enemy takes the worst action possible against it
tilts the problem toward a “minimax” style of thinking, which is also
taught in war colleges. Such thinking, however, is quite unsatisfying
for an aggressive commander interested primarily in winning. A more
balanced approach is to characterize an option by its most likely, best-

29 We are not concerned here with fully automated decision tools, which are of little utilicy
to high-level C* decisionmaking (Wickens and Hollands, 1999).
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case, and worst-case outcomes (Davis, 2003b) and then identify the
circumstances that would enhance the likelihood of the best-case out-
come and reduce the likelihood of the worst case.

Debiasing Can Be Counterproductive Because of Stale Informa-
tion. Caution should be exercised in assuming that a particular theo-
retical bias actually exists and creates problems in an operational envi-
ronment. Moreover, efforts to preclude such biases, motivated by the
general literature, can be counterproductive. For example, a casual
reading of the literature might suggest that the bias of base-rate
neglect can be easily and properly removed by DSSs. Upon consid-
eration, however, we realize that many judgments require the deci-
sionmaker to combine information about a more-or-less stable average
incidence of some class of events (the “base rate”) with specific
information about a member of that class. A commander might
know, for instance, that an enemy has only rarely been found to col-
locate military communications operations in hospitals, but he has
fresh intelligence that encrypted radio transmissions are issuing from
a particular hospital. How should he balance the old base-rate infor-
mation with the new information? It seems unlikely to us that a
generic DSS algorithm would resolve that dilemma.

Using Frequency Depictions to Assist in Bayesian Reasoning.
Classical decision theory dictates, by Bayes’ law, that prior probabili-
ties inform the interpretation of new information, but many studies
have shown that even experts given familiar problems are not intui-
tively Bayesian. A famous medical-school experiment illustrates this.
When told that a disease is present in 0.1 percent of the population
and that the probability of a false-positive result on a test for the dis-
ease is 0.05, nearly half of the subjects estimated that a randomly
selected person who tests positive has a 95 percent chance of having
the disease. The reader should quickly make his or her own estimate
before reading on.

Fewer than 20 percent of those tested offered an estimate in the
neighborhood of the correct value of 2 percent (Casscells,
Schoenberger, and Grayboys, 1978). When the medical-school
experiment was replicated some years later, the control group pre-
sented with the probabilistic problem formulation performed as
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pootly as those in the original experiment did, but the subjects given
a frequentist formulation did not ignore the Bayesian prior and esti-
mated the result correctly (Cosmides and Tooby, 1996). A frequen-
tist depiction might say that in 10,000 patients, about 500 will falsely
test positive and 50 will actually have the disease (e.g., cancer). If that
is clearer than the first statement, consider the pictorial depiction in
Figure 4.4, which shows clearly that the fraction of positives corre-
sponding to real cancer patients is very small. Indeed, it is 10/510, or
about 0.02, as mentioned above. In this and other cases, both a fre-
quentist depiction and a visual version thereof can do a lot to
improve the quality of judgment (Gigerenzer and Selten, 2002). This
is of interest because some of today’s high-level DSSs rely on prob-

Figure 4.4
Graphical Depiction of High False-Positive Rates
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abilistic formulations and might be better served by a shift to
frequentist depictions.®

But the Frequentist Approach Can also Cause Problems. Unfor-
tunately, there are no panaceas, and the alleged general superiority of
the frequentist depiction is hotly disputed, on both methodological
and theoretical grounds (Evans, Handley, Perham, Over, and
Thompson, 2000). Indeed, the countervailing studies contend that
decisionmakers presented with frequentist data ignore diagnostic evi-
dence and overweight the base rate. As an example related to the
research findings, if a commander were told that “you’d expect to
find chemical weapons in a bunker of that sort two times out of ten,”
the syntax may improperly suggest that the estimate is empirically
well rooted, when in fact it merely represents a subjective estimate by
intelligence officers.

Some recent research addresses the issue of which statistical for-
mat is preferred in different situations (Brase, 2002). Other studies
find that formulations such as “the odds are one to four against find-
ing chemical weapons in that bunker” are the most readily under-
stood (Heuer, 1999). Still other investigators maintain that biases
that appear to reflect insufficient reaction to new evidence may in fact
serve the decisionmaker well in the face of real-world changes affect-
ing the reliability or significance of evidence (Cohen, 1993). In short,
framing likelihoods as probabilities or frequencies can influence deci-
sionmaker judgments and the extent to which they approximate
Bayesian reasoning, but more research is required to derive useful pre-
scriptions for decision support. The potential for DSS is high, but the
prescriptions remain ambiguous. Koehler (1996) presents a good dis-
cussion of how complex the issue is but also suggests useful principles
for making sense of the conflicting literature. The suggestions reflect
appropriate skepticism for uncritical acceptance of alleged base rates
while also summarizing the methods that can be used to encourage
paying attention to base rates.

% An example is the CAESAR II/COA system used in war games (Heacox, Quinn, Kelly,
and Gwynne, 2002)
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Collaboration Technologies. One technological consideration in
several of the techniques discussed above is the quality of virtual col-
laboration. Advances have occurred steadily for more than two dec-
ades, and virtual collaboration, to include web-based modeling and
simulation, is increasing. There are issues, however, that arise in vir-
tual, rather than face-to-face collaboration. These have been reviewed
recently (Wainfan and Davis, 2004). There are also difficult chal-
lenges in envisioning the entire virtual environment and the require-
ments for information exchange that go with it (McQuay, 2003).

Cutting-edge work in collaborative discussion, reasoning, and
decision is ongoing in a number of companies, including SRI Inter-
national, which has the HARP (Human Augmenting Reasoning
Through Patterning) program, the tools of which encourage multiple
perspectives and evidential reasoning. One such tool is SEAS (Struc-
tured Evidential Argumentation System). As in other current-day
approaches to decision support, there is great emphasis on maintain-
ing alternative hypotheses and seeking decisions that are robust under
uncertainty.

Tools for effective networking and collaboration are important
in everyday life, as demonstrated by countless teenagers who multi-
task every night as they do homework, participate in chat rooms, and
talk on cell phones (Roberts, Foehr, and Rideout, 2005). Such tools
are also important for decision support. In the most recent Gulf war,
U.S. military C* was highly distributed, with subordinate command-
ers even being in separate countries. Joint staffs worked on complex
problems such as targeting, retargeting, and battle-damage assess-
ment, using collaborative tools. This was but the beginning of a dra-
matic evolution in the years ahead. Although commanders are already
well served with videoconferencing, implications of distributed net-
works for higher-level decision support are not as yet well under-
stood. Since one recurring recommendation for support of decision-
makers is assuring that they “reach out” to experts and provocative
thinkers wherever they may be, in order to broaden their recognition
of factors and possibilities, it is also important to have tools to help in

doing so. The Wainfan-Davis study (2004) reminds us that this may
not be trivial and that science can help.



CHAPTER FIVE
The Research Frontier: Reconciling Analytic and
Intuitive Considerations

Introduction

As indicated in Chapter Two, a consensus is forming on how humans
make decisions, but major conflicts persist about how humans should
make decisions and, by extension, how human decisionmaking can be
improved, i.e., what the prescription should be. This chapter moves
toward a synthesis on the prescriptive issues.

Comparing Decisionmaking Paradigms

The evolution of decisionmaking theory can be envisioned as a slow,
steady retreat from the rational-choice model (RCM), as shown
schematically in Figure 5.1. The classic notion (sometimes implicit)
was that RCM often applied to both actual and desired behavior,
which fit well with economic theory of the time. The retreat began
with Simon’s concept of bounded rationality (Simon, 1982b), which
emphasized constraints of time, resources, and cognitive capacity.
These constraints force decisionmakers to construct a simplified men-
tal model of the world. Although decisionmakers may act rationally
within this model, the results are not necessarily rational by classic
standards.

Bounded rationality was resisted by many because it was unclear
how one could operationalize it, whereas one could do straightfor-
ward (and sometimes elegant) mathematics with RCM. Nonetheless,
facts are stubborn, and the concept is today well accepted. However,
the mantle of bounded rationality is now claimed by those working
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Figure 5.1
Evolution of Decision Theory

Is RCM an accurate descriptor of what human
decisionmaking can reasonably be?
Yes, given
Yes constraints No
Is RCM an Classical Heuristics and biases
acceptable Yes paradigm paradigm (HBP)
standard of Bounded
human rationality
decision- Naturalistic
making? No paradigm (NP)

RAND MG360-5.1

under two very different paradigms, the heuristics and biases para-
digm (HBP) and the naturalistic paradigm (NP), both of which were
discussed in Chapter Two.

At the distinct risk of oversimplification, it can be said that those
pursuing HBP have emphasized that, because of a built-in tendency
to use heuristics, humans often do not follow RCM, even when time
and effort requirements are not issues (Tversky and Kahneman,
1974). By using RCM as a baseline for comparison, HBP researchers
effectively suggested that decisions should be made by RCM, albeit
constrained by bounded rationality. In Figure 5.1, then, HBP sug-
gests that RCM is not descriptively accurate, but that it is the appro-
priate standard. In contrast, adherents of NP argue that RCM is often
neither descriptive nor desirable!

Table 5.1 presents a generalized comparison of HBP and NP.
Heuristics and biases research typically is conducted in a laboratory
setting: Research subjects are presented with a task and asked to pro-
vide a choice, judgment, preference, or estimate. Often these tasks
have a “right” answer, that is, a mathematically precise estimate or a
normatively dominant choice. The goal of HBP research is to mea-
sure systematic deviations of subjects’ answers from the normative
answers, with the hope that these deviations will provide insights into
the way the mind structures decisions.
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Table 5.1
Comparing the Heuristics and Biases and Naturalistic Paradigms

Parameter Heuristics and Biases (HBP) Naturalistic (NP)
Approach

Environment Laboratory The field

Subjects All types Experts

Method Choice elicitation Choice observation

Measure Deviation from RCM Success of strategies

Descriptive Model

Situation assessment Heuristics Pattern matching and story
building

Risk accounting Heuristics Mental simulation

Strategy selection Rule-based, breadth-first  Intuitive, depth-first

Source of error Decisionmaker Environment

View of Normative Models

Rational choice Desirable Potentially burdensome

Intuition/expertise Potentially misleading Key to human success

View of Decision Support

Role of decision support?  Check decisionmaker Support decisionmaker style

Role of training Develop statistical skills Develop expertise

@ This oversimplifies. For example, NP recognizes the value of framing and displaying
information in order to reduce bias, as in medicine (Patel, Kaufman, and Arocha,
2002). More generally, the sharp differences blur upon closer inspection (Kahneman
and Tversky, 1996).

NP research takes a decidedly different approach: Decision-
making is observed in a “real-world” setting, complete with time pres-
sure, uncertainty, ill-defined goals, high personal stakes, multiple
actors, and dynamic environments (Lipshitz, Klein, Orasanu, and
Salas, 2001). Moreover, NP research tends to measure the decision-
making strategies of experts acting in the domain of their expertise.
The goal of this research is to use real-world observation to better
understand real-world decisionmaking, with the hope that expert
strategies hold prescriptive value for improving decisionmaking in
general.
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Even as descriptive models, the two approaches are quite differ-
ent. While HBP researchers often assume a breadth-first selection
process with a series of rule-based decisions, NP observes depth-first
processes that make choices quickly and intuitively (Klein, 1998). In
NP, the expert first attempts to match the current situation to similar
situations in the past. If a match is found, the decisionmaker engages
in “recognition-primed decisionmaking” and applies the knowledge
from the earlier match to generate a solution to the present situation.
If a match cannot be retrieved, the decisionmaker engages in explana-
tion-based reasoning, trying to assess the situation based on the evi-
dence at hand. To gauge risk, the expert then mentally simulates the
potential course of action, to imagine whether it will work and to
envision any adverse consequences. Rather than blaming errors on
faulty reasoning, as is done in HBP, mistakes are attributed to such
factors as “poor training or dysfunctional organizational demands, or

flawed design of a human-computer interface” (Lipshitz, Klein,
Orasanu, and Salas, 2001).

The Value of Synthesis

Table 5.1 suggests that there is a chasm between the two schools, and,
as mentioned in Chapter Two, much ink has been spilled over the
disagreements between them. Our own view is that the differences
can be both exaggerated and understated. As we discuss below, citing
many thoughtful studies, some of the differences disappear under
scrutiny. This said, it would be difficult to overstate the significance
of the attitudinal differences and their effects on practical issues such
as how people are educated, trained, and allegedly helped by DSSs. In
referring to the need for synthesis, we have much more in mind than
merely itemizing carefully the points on which the two schools do
and do not agree technically. We believe that pursuing synthesis
could have profound effects on the approach to decision support.
With this in mind, let us first note how some of the gap is less real
than is sometimes claimed and then turn to the more difficult issues
and their implications for decision support.
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Elements of Synthesis

More than two decades ago, it was observed that normative and
descriptive theories of decisionmaking were converging and that it
was counterproductive to insist on the distinction (Kahan and
Rapoport, 1984). We agree, despite the long tradition of that distinc-
tion.

One way to blur the distinction is to use “dual-process theories,”
on which a recent review is available (Stanovich and West, 2002).
This approach explains differing human responses to experiments in
terms of two systems. System 1 is intuitive and fast, using heuristics
to make effort-minimizing decisions about the world. These shortcuts
are often useful, but they can lead to systematic deviations from
rational norms. System 2, conversely, is slow, effortful, and rule-
based. It can handle more-deliberative decisions, and it also serves as a
check for when intuitive decisions appear to violate statistical norms.
Error can be considered a failure of both cognitive systems: System 1
for generating the erroneous decision, and System 2 for failing to
“notice” the error. Whether one is referring to how humans 4o make
decisions or how they should make them, the existence of both sys-
tems or modes makes sense and is supported by research.

One paper (Eisenhardt and Zbaracki, 1992) reviewed numerous
case studies of mid- to high-level strategic decisionmakers to charac-
terize the decision processes used and found that many decisionmak-
ers employ different techniques, depending on the circumstances of
the decision problem or the decision environment. The recently pro-
pounded theory of poliheuristic decisionmaking is gaining currency
in foreign-policy analysis (Dacey and Carlson, 2004). Much like pro-
ponents of the dual-process theories that have emerged from the cog-
nitive and behavioral sciences, political scientists contend that deci-
sionmakers first employ holistic decision processes (including
interpretive stories) to eliminate politically unacceptable alternatives
and then employ a classically analytic decision procedure to select
from the remaining set of acceptable alternatives. This theory has
been tested in experiments with high-ranking Air Force officers
playing the roles of senior foreign-policy and national-security deci-
sionmakers (Mintz, 2004).
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In summary, humans are willing and able to use processes asso-
ciated with intuition, pattern recognition, and flowing adaptation, as
well as processes associated with approximations to rational choice,
depending on the circumstances.

The gap between the HBP and NP schools is wider concerning
how humans should decide and how best to help them decide well.
Attempts to capture HBP and NP within a single normative frame-
work have mostly been at a high level of abstraction (Samuels, Stich,
and Bishop, 2002). However, at least one study (Payne, Bettman, and
Johnson, 1993) took a lower-level view, examining consumer deci-
sionmaking behavior, and found a contingent mix of analytic and
intuitive decision processes. The authors provided recommendations
for improving decisionmaking, by recognizing which process is the
most apt in given circumstances and by changing the decision envi-
ronment so as to make a chosen decision process more successful. Fur-
thermore, they contended that “intelligent, adaptive decision support
systems appear to be a promising idea” (p. 233) but noted that differ-
ences in personality and decision tasks pose a daunting challenge to
DSS designers.

Tarter and Hoy cast an even wider net and propounded a “con-
tingency theory” of decisionmaking, which incorporates various
administrative and political models as well as classical and intuitive
individual-level models (Tarter and Hoy, 1998). They were appropri-
ately cautious in stipulating which method is best suited to which cir-
cumstances.

From a DSS-centric perspective, one author (Silverman, 1994)
bravely essayed a “unified decision approach” to synthesize expert sys-
tem and mathematical decision theories. The former largely corre-
spond to intuitive decisionmaking theories; the latter, to constrained
RCM.

It seems, then, that the time is ripe for synthesis and that
research is emerging to support it: Humans make decisions differ-
ently, depending on circumstances, and they should make decisions
differently, depending on circumstances. Perhaps this is a moment for

the proverbial “Duh!,” but the boundary lines drawn in academic
research sometimes obscure this point.
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With this background, let us now begin the cautious move in
the direction of a practical synthesis, one that goes beyond theoretical
reconciliation and produces actionable recommendations for decision
support. We confront two major issues: (1) improving automated
decision support, and (2) balancing what can be termed cold and
story-based decision support.

Improving Automated Decision Support

Challenges

At first blush, it seems that the naturalistic and rationalistic para-
digms hold irreconcilable views on the role of computerized decision

support. The difficulty is highlighted by an example:

The DSS-1 [a decision-support system for fighter pilots] had a
comparison-to-norms module, which provided color-coded
squares to show how well a set of critical parameters [e.g., speed,
altitude] for the selected track fit a template for known threats
[good fit, questionable fit, or poor fit] and support pattern
matching. This module was not well liked and was not used as
had been intended. It was, therefore, dropped from the DSS-2
(Morrison, Kelly, Moore, and Hutchins, 2000).

An NP adherent would wholeheartedly endorse this removal.
The comparison-to-norms module, rather than aiding the pilot’s
decision, attempted to supplant his intuitive skill at pattern matching
by dictating a measure of typicality using an obscure algorithm. Fur-
thermore, the fact that it was not liked and had not been used as
intended revealed poor “cognitive ergonomics”—a mismatch with the
thinking style of the pilot.

An HBP advocate would strongly disagree with this assessment.
The comparison-to-norms module, while perhaps not designed opti-
mally, was an important graphical representation of the typicality of a
reference class—a crucial step in correcting for the tendency to over-
look regression-to-the-mean in making intuitive estimates. The fact
that the module had not been liked or used properly was not a nor-
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mative issue but an operational one. If anything, the pilots’ inability
or unwillingness to compare the current situation to norms revealed a
dangerous gap in their intuitive reasoning.

Who is right? Normatively, both paradigms seem to fall short. It
does little good to include a decision aid that is ignored and disliked;
after all, “an unused decision aid is a worthless decision aid” (Kaplan,
Reneau, and Whitecotton, 2001). On the other hand, an unused
decision aid might be valuable if decisionmakers would learn how to
use it. This suggests a two-pronged approach to improving automated
decision tools. Not only should the tools be made more user-friendly
(as recommended by NP), the decisionmaker should be made more
mathematically sophisticated (as recommended by HBP) in order to
be able to appreciate the value of the tools. The goal, therefore, is to
optimize the fit between a decisionmaker and a potentially valuable
decision tool—and to have the decisionmaker appreciate that fit, con-
sciously or not—recognizing that both can be improved.

Perhaps the overriding desideratum is that the decisionmaker
have the correct level of trust in his decision aids; one proposed
framework consists of (1) appropriate trust—information is good and
the user trusts it, (2) false trust—information is poor and the user
trusts it, (3) false distrust—information is good and the user distrusts
it, and (4) appropriate distrust—information is poor and the user dis-
trusts it (Muir and Moray, 1984).

“Trust” has been discussed as a social construct and as a relation-
ship between humans and automated systems (Lee and See, 2004); it
is also discussed in one study on aided adversarial decisionmaking
(Llinas, Bisantz, Drury, Song, and Jian, 1998). Cohen argues for a

situation-specific trust model:

The problem of decision aid acceptance is neither undertrust nor
overtrust as such, but inappropriate trust: a failure to understand
or properly evaluate the conditions affecting good and bad aid
performance. To the extent that decision aid acceptance has
foundered on the issue of trust, training deserves some of the
responsibility. Training focuses on inputting required informa-
tion, changing modes, and reading outputs. Such training inad-
vertently reinforces the misconception that trust must be an
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invariant stance, to accept or reject an aid as a whole. There has
been little effort to teach skills for evaluating an aid’s perform-
ance in real time, and training strategies for interacting with the
aid based on that evaluation (Cohen, 2002, p. 1).

Concrete Suggestions for Design of Decision Support

Current decision science recommends a number of ways to increase
the usage and trustworthiness of decision tools by improving the tools
themselves and the users’ interactions:

* Tool Design Features

— Allow personalization. Decisionmakers rate a tool as more
usable when they can customize certain features, such as win-
dow size and chart scale (Morrison, Kelly, Moore, and
Hutchins, 2000). They also may reject a tool that they feel
compromises their “art” (Arkes, Dawes, and Christensen,
1986).

— Use graphical interfaces. Decisionmakers also rate graphical
tools as more trustworthy than text-based modules (Bisantz et
al., 2000). However, there may be an interaction with com-
plexity; that is, graphical interfaces are more appropriate for
complex tasks, while text-based interfaces are sometimes more
appropriate for simple tasks (Speier and Morris, 2003).

— Maintain interactivity. Decisionmakers prefer an interactive
tool to a noninteractive tool, even when they perform better
with the latter (Kaplan, Reneau, and Whitecotton, 2001). Of
course, this changes if interactivity requirements are so severe
as to be burdensome (Morrison, Kelly, Moore, and Hutchins,
2000).

— Limit preprocessing of data. Decisionmakers prefer decision-
support calculations (such as ranking alternatives) that can
easily be linked to concepts in the “hard data.” They should
also have access to all of the underlying data used by the deci-
sion tool (Morrison, Kelly, Moore, and Hutchins, 2000).
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¢ Decision Tool/User Interaction

— Explain the tool’s reasoning system. Explanations of the tool’s

principles and underlying processes can assure (or ultimately
convince) the user that its reasoning is logical and its conclu-
sions sound, relevant, and useful (Irandoust, 2002). A user
who finds that a tool has made an error may distrust other,
even previously reliable, decision aids, unless the error is
explained (Dzindolet, Peterson, Pomranky, Pierce, and Beck,
2003).

Increase early user involvement. Decisionmakers will rely more
on a decision tool when they have used it during training.
Reliance will also increase if the decisionmaker was involved
in the original development of the decision tool (Kaplan,
Reneau, and Whitecotton, 2001).

Control validity information. When decisionmakers are told
how accurate a decision tool is, they will overestimate their
own accuracy and rely less on the tool (Arkes, Dawes, and
Christensen, 1986). Therefore, this validity information
should be either withheld or presented along with informa-
tion on the decisionmakers’ personal accuracy (Kaplan,
Reneau, and Whitecotton, 2001).

As we noted in the discussion of debiasing in Chapter Four,
decision science also points to several simple ways of increas-
ing the mathematical sophistication of the decisionmakers
using these automated tools:

Teach decisionmakers about decisionmaking biases and the situa-
tions in which they might be vulnerable to them (Schultz,
1997).

Expose decisionmakers to statistical concepts and instruct them
on how and when to “think like statisticians” (Nisbett,
Krantz, Jepson, and Fong, 1982). Admittedly, there are
doubts about the feasibility of this approach, which we share.
As Nobel Laureate Richard Thaler noted ruefully in a lecture
that one of the present authors (Davis) attended, even serious
students who did well in a course devoted to this goal made
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the same classic errors when retested a year or two later, sug-
gesting that human shortcomings in this regard are wired in
and can be overcome only with extreme difficulty.

— Show base rates and frequencies graphically (Gigerenzer and
Selten, 2002; Stone et al., 2003). One does not have to buy
into the frequentist school’s views (e.g., those of Gigerenzer)
to recognize that graphical presentations are often more cog-
nitively effective than mathematical expressions are.

— Use decision tools to display typicality information, alternative
hypotheses, and disconfirming evidence (Morrison, Kelly,
Moore, and Hutchins, 2000). If generating alternatives is per-
ceived as easy, encouraging people to consider alternatives
reduces many biases not only in the domain of the experi-
ment but in unrelated domains as well (Hirt, Kardes, and

Markman, 2004).

Balancing Cold and Story-Based Decision Support

A second critical issue in higher-level decision support is that of bal-
ancing what can be termed cold analysis—numbers, facts, and fig-
ures—with story-based analysis that relies on context, past experience,
and narrative impact. HBP proponents would argue that the former
should be emphasized at the expense of the latter; indeed, attempts by
decisionmakers to consider information external to the experimental
frame (such as the ease of visualizing a certain outcome) or to exclude
relevant data (such as base rates) from consideration are generally
considered prima facie evidence of bias. Naturalistic research, on the
other hand, emphasizes the importance of stories in tying hard data
to the real world.

While the term story appears often in decision science, especially
in the naturalistic literature, it is somewhat confusingly used to
describe two different phenomena: Persuasion stories are arguments or
observations that sway a decisionmaker toward a specific course of
action. They can take many forms, including anecdotes, analogies,
past experiences, gut feelings, moral arguments, and pure conjecture.
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For example, an anecdote about a fighter pilot mistakenly targeting a
commercial airliner might sway an air-defense officer from advocating
a shootdown in an ambiguous situation. Historical analogies are often
used, cynically or in earnest, to frame decision situations so as to
compel particular policy decisions (Khong, 1992). Even so, ostensibly
similar analogies can yield divergent policy prescriptions (e.g., “Iraq is
just like Vietnam so we should get out now” versus “Iraq is just like
Vietnam so we need to show resolve”). Interpretive stories are explana-
tions that the decisionmaker uses to tie together observation, opinion,
and intuition. For example, a reluctant air-defense officer might con-
struct the story that his ambiguous radar track is nothing more than a
friendly pilot who has forgotten to turn on the IFF (identify friend or
foe) system. The interpretive story serves as the decisionmaker’s “best
guess” of what is going on and therefore drives the course of action
that is eventually taken.

Stories are employed to integrate (1) facts or information from
the current situation, (2) knowledge about similar situations, and (3)
generic expectations about what makes a complete story, such as
believing that people do what they do for a reason (Klein, 1998). In
essence, then, decisionmaking is a process that uses cold analysis and
persuasion stories to generate an interpretive story, which in turn
generates action. The role of stories, for both persuasion and interpre-
tation, has been extensively studied only in jury decisionmaking
(Hastie and Pennington, 2000) and in attorneys’ legal argumentation
(Verheij, 2001). The practical issue for decision support is that of
how large a role persuasion stories should play in this process. A sec-
ondary concern is how persuasion stories, if deemed appropriate, are
best conveyed to decisionmakers?

The crux of this second normative synthesis is that the proper
balance between stories and cold analysis depends on the characteristics of
the decision being faced, the decision environment, and the decision-
maker. These characteristics include decision class, time pressure,
group homogeneity, level of data-quality information, level of ambi-
guity, irreversibility, and emotional distress.
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Decision Characteristics

Decision Class. Two papers thirty-some years apart (Bormann,
1969; Gouran, 2003) observed that the question at the root of a spe-
cific decision can be classified as one of fact, of value, or of policy.
Returning to the example of the air-defense officer looking at an
ambiguous radar track, if he knew what the track actually repre-
sented, then the fact-based decision would be obvious: shoot the
enemy, spare the friend. By contrast, for defense planners facing a
resources-constrained choice between two aircraft proposed for devel-
opment, the decision is fully value-based; all facts are known, but the
decision remains, since it is now rooted in a tradeoff of conflicting
preferences. Finally, many operational decision situations—which can
be called policy-based—are richer and more complex than these
examples, in that they involve both factual uncertainty and a difficult
conflict of values.

Holding situation-specific characteristics equal, a fact-based
decision regards reaching “the truth” as paramount. Consequently,
cold analysis and stories should be aligned against each other through
iterative correction and calibration. New data should challenge the
applicability of influential stories; new stories should challenge the
reliability of influential data.

On the other hand, the priority of value-based decisions is to
make an accurate and complete comparison. To do this optimally, all
relevant factors should be catalogued and compared in what is, essen-
tially, the rational choice method (even naturalistic researchers recog-
nize its usefulness in such situations (Klein, 1998)). While persuasion
stories may be useful in an exploratory role—highlighting additional
factors to be included in an analytical model-—these decisions usually
require a process heavy in cold analysis.

Finally, policy-based decisions with multiple levels of uncer-
tainty should ideally select the strategy option that is most robust and
adaptive given uncertainties and value structure (Davis, 2002a;
Lempert, 2002). This suggests a more complex value calculation that
factors in the direct costs of a specific course of action and the indi-
rect costs of being wrong. The proper calibration of cold processes
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and stories will depend strongly on these other decision characteris-
tics.

Level of Ambiguity. When decisionmakers use structured-
decisionmaking analysis, they tend to exclude ambiguous factors that
are not easily measurable (van Dijk and Zeelenberg, 2003). Persua-
sion stories may serve a vital role in putting these factors back into

consideration if they were overlooked (Luce and Raiffa, 1989; Frostic,
Lewis, and Bowie, 1993).

Decision-Environment Characteristics

Time Pressure. When a decision must be made under extreme
time pressure, cold analysis may require too much time. Stories can
impart much more contextual information than they explicitly state.
If the storyteller and the audience share common assumptions, this
can be an efficient way of quickly relating a large quantity of informa-
tion—if not, then assuming a common understanding of the context
may be quite risky (Gershon and Eick, 1995). Automated decision
aids can help, but often a decision must be made before all factors
have been considered. In these cases, stories (especially comparisons
to past experience and gut feelings) may be valuable in preventing
paralysis. Whether a story is best related as a written or a graphical
narrative depends on the particular cognitive characteristics of the
audience, as well as on the content of the story (Wojtkowski and
Wojtkowski, 2002).

Level of Data-Quality Information. Data-quality information
(DQI) gauges the accuracy and reliability of in-hand data. If DQI is
unavailable or there is reason to believe that the data being analyzed
are suspect, an overreliance on cold analysis will lead to false precision
and a skewed interpretive story. In these cases, persuasion stories (e.g.,
those involving past experience) should assume greater importance.

Irreversibility. In general, NP advocates a “try-and-adapt”
approach to making decisions, while rational norms imply a careful
first search for the “best” option. However, in some decisions, there is
no room for adaptation—either the missile is fired or it is not. In
these cases, persuasion stories should be examined critically, so that
they do not lead to an irreversible error (note that this may cause the
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air-defense officer to think twice about relying on stories due to time
pressure).

Decisionmaker Characteristics

Group Homogeneity. If a decisionmaker receives support from a
group of individuals with similar expertise, life experiences, world-
views, and goals, their persuasion stories may systematically neglect to
cover an important area of the decision and thus systematically bias
the interpretive story. In general, the role of persuasion stories should
be underweighted in such groups.

Level of Emotional Distress. A long line of decision research has
demonstrated that desperate or upset decisionmakers take riskier
actions than their calmer or happier counterparts do (Mellers,
Schwartz, and Cooke, 1998). It seems plausible that such decision-
makers would be especially vulnerable to “pie in the sky” stories that
promise great rewards or simply a way out of a bad situation. During
emotionally trying times, decisionmakers should rely less on stories
and more on cold analysis.

General Recommendations

Building from the research, we offer several general recommendations
for improving this dimension of decision support:

* DPut checks and balances on persuasion stories;

* Create diverse decisionmaking groups;

* Know the limitations of advice;

* Institutionalize skepticism;

* Formalize the use of alternative models, including adversary
models, in doctrine.

Some of these are offered as hypotheses that should be subjected
to empirical testing. We now address each of them in turn.

Put checks and balances on persuasion stories. A good story
is “coherent, informative, persuasive, memorable, emotionally salient,
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and/or interesting” (Graesser, Olde, and Klettke, 2002). Armed with
these strengths, a good story can fundamentally alter the way deci-
sionmakers view a problem. Consequently, storytelling should never
be a one-sided exercise. Stories “rooting for” one outcome of a deci-
sion should be balanced, whenever possible, by stories supporting the
opposite outcome (e.g., vivid anecdotes of what has gone wrong
should accompany stories of what has gone right, and vice versa).
Competing stories will prompt decisionmakers to evaluate the relative
typicality or applicability of each, which is a crucial step in control-
ling the stories’ influence. If possible, stories should be evaluated
against measurable data (e.g., to measure the actual typicality of a per-
suasion anecdote).

Create diverse decisionmaking groups. As suggested above,
decisionmakers should ideally receive decision support from people
with varying expertise, life experiences, worldviews, and goals. To the
extent that people generate persuasion stories from these intangible
factors, this diversity will create a rich set of competing stories, with
the benefits outlined above. Diversity of opinion can also reduce the
dangers of overconfidence and groupthink (Janis, 1982).

Know the limitations of advice. At the same time, seeking a
diverse set of advice has its own dangers. Decision research has identi-
fied a “confidence heuristic,” by which decisionmakers judge their
most confident advisor as the one most likely to be correct, even
when that confidence is misplaced (Price and Stone, 2004). Equally
problematic, people who consider themselves highly knowledgeable
about a subject are likely to discount valuable advice altogether
(Yaniv, 2004) and to ignore DQI when it is available (Fisher,
Chengalur-Smith, and Ballou, 2003). Once again, we might system-
atize the process in order to give equal scrutiny to each opinion, and
we might possibly try to educate decisionmakers about their potential
biases.

Institutionalize skepticism. As shown in the examples above, a
single set of circumstances can produce perfectly reasonable but com-
pletely opposite interpretations. There has been broad consensus
within HBP and NP on the existence of a “belief bias”—that once a
decisionmaker forms an interpretive story, he or she will process all
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subsequent observations within that interpretive filter, noticing the
data that support the earlier interpretation and discarding the data
that do not. To control for this bias, it would seem that decisionmak-
ers on the ground should use (at least informally) something like the
“basis for assessment” module designed for fighter pilots (Morrison,
Kelly, Moore, and Hutchins, 2000), in which the evidence for and
against each of several possible interpretive stories is tabulated and
compared. Acceptance, however, will depend critically upon quality
of implementation. Other methods for institutionalizing skepticism
include bringing new faces into the process midstream and using
devil’s advocates. The latter method has not proven effective in the
past, but this may be because people become tarred with the contrary
interpretation and are then discounted personally. Perhaps rotating
the responsibility for presenting contrary interpretations would
improve results.

Formalize the use of alternative models in doctrine. Alterna-
tive adversary models, for example, are an impersonal but potentially
effective way of opening minds (Davis, 2002b; Kulick and Davis,
2003b).

Despite all the “dangers” of persuasion stories highlighted above,
these stories are nevertheless a crucial part of decisionmaking, as is
evident from case histories of national-security decisionmaking. Total
reliance on either cold analysis or stories alone can easily lead to sig-
nificant and systematic error. Hybrid approaches are being studied in

ongoing RAND research.




CHAPTER SIX
Conclusions

This monograph (including its appendices) provides a highly selective
review of decision science developed with the Air Force Research

Laboratory in mind. Some highlights follow that may be relevant to
AFRL’s research agenda.

The Decisionmaking Component

Modern decision science embraces a far greater understanding than
was previously available of how individuals and groups go about deci-
sionmaking, the problems to which they are subject, and the issues
that should be borne in mind when developing decision support. Not
very long ago, much of the emphasis here was on “debiasing” deci-
sions in ways suggested by the heuristics and biases school associated
with Kahneman and Tversky. More recently, however, a conflicting
paradigm has arisen under the rubric of naturalistic decisionmaking.
Based on our review, we conclude the following:

* A synthesis should be developed between the two schools,
because both have much to offer.

* Some of this synthesis can be achieved by knowing the circum-
stances under which to use the rational-analytic paradigm, rather
than, say, the “primed pattern recognition” often mentioned in
naturalistic decisionmaking. Real-time operations will often
depend on experts acting intuitively, on the basis of internalized
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knowledge. But this internalized knowledge should, we pre-
sume, be created in part by highly structured exposure to situa-
tions and dilemmas. The success stories of naturalistic research
are primarily associated with experts following their intuition.
Moreover, even being an expert is not enough, as the disastrous
errors of many famous commanders throughout history should
remind us. “Highly structured exposure,” then, should address a
wide range of circumstances.

How naturalistic principles should be taken into account when
supporting high-level decisionmaking associated with, say,
peacetime planning, development of war plans, or political-
military crisis management (as distinct from the real-time
actions of a pilot) is a cutting-edge issue. We presented some
ideas and recommendations on this matter in Chapter Five, but
the issue is not yet well understood. Both theoretical and

empirical research are badly needed, research that cuts across the
academic “schools” to solve problems.

The Analysis Component

Several themes should be kept in mind in developing decision-
support systems and their underlying research base. These include (1)
the need to understand the target system; (2) the need to deal effec-
tively with uncertainty, which is often massive; and (3) the need to
interact with the user, and iterate.

It follows that great emphasis should also be placed on

¢ Multifaceted, multilayered understanding of relevant systems
and their phenomena, both “hard” and “soft”;

* Planning for adaptiveness and, as part of that, the search for
strategies that are flexible, adaptive, and robust;

* Using the constructs of complex adaptive system (CAS) theory
to structure inquiry.
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These principles have numerous implications for research,
methods, and tools. They imply the need to emphasize, e.g., explora-
tory analysis, multiresolution modeling, families of models, and new
types of search tools concerned not with optimization but with the
criteria of flexibility, adaptiveness, and robustness. Where meaningful
prediction and optimization are feasible, related solutions should fall
out as special cases, but this will be the exception rather than the rule
in much work. Internalizing this change of paradigm is of fundamen-
tal importance to the future of decision-support systems.

Developing meaningful models and simulations to support such
work will require extensive agent-based modeling 474 new concepts
for using such models analytically, despite the fact that their behav-
iors are not as stable and easy to understand as are those of more-
traditional models. In warfare, the sides’ learning and adapting is
fundamental, not something on the margin. A variety of adversary-
modeling techniques need to be pursued, including those using
Bayesian-net methods and those taking a more top-down approach
with hierarchical decision tables.

Because constructing model families will require dealing with
heterogeneity of formalism, representation, and the like, tools will be
needed to assist in doing so.

Interaction and iteration are, in practice, associated with virtual
organizations and virtual forms of communication. Related phenom-
ena need to be understood in depth so that technology and methods
can be designed to achieve high performance with minimal errors of
the sort that arise in virtual work.

Both the need to achieve a deep understanding and the need to
deal effectively with uncertainty through flexibility, adaptiveness, and
robustness yield a need for great emphasis on C? and networking.
Much effort is currently being directed to these matters, but it is pos-
sible, and perhaps likely, that an entirely new generation of models
and simulations will be needed if military analysis and related deci-
sion support are to fully reflect and exploit the potential of ubiquitous
networking.
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Such new-generation models may need architectures very differ-
ent from those of past models, in which C* was a mere support func-
tion and networking was largely omitted except in old-fashioned
modeling of point-to-point communications.



APPENDIX A
Debiasing an Air Campaign’

Let us consider a concrete illustration of the role of judgmental biases
in operational DSSs: a notional campaign and a commander charged
with operational decisions, in this case, the Joint Force Air Compo-
nent Commander (JFACC) producing the master air-attack plan
(MAAP) and daily air tasking orders (ATOs) (U.S. Air Force, 1994).
We pose plausible circumstances for representative judgmental biases
within a narrative of this campaign and tasks and consider the possi-
ble role of DSS. This thought experiment does not reflect any actual
DSS in current use or development; many of those are no doubt well
ahead of our thinking in these regards. Rather, it entails a caricature
of the JEACC’s proneness to biased judgment.

We use the judgmental bias taxonomy from Chapter Two; the
narrative illustrates one bias from each category:

* Memory biases: most fundamental, concern storage and recall of
information;

Naive statistical biases: nonprobabilistic information processing;
Confidence biases: excessive confidence in own judgment and
decisionmaking skill;

* Adjustment biases: undue attachment to initial assumptions;
Presentation biases: cognitive effects of how information is per-
ceived and initially processed;

! This appendix is excerpted from a conference paper (Kulick and Davis, 2003a).
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* Choice biases: highest level of abstraction; concern response to
the general decision situation.

To illustrate these, consider the following narrative:

Red has invaded and occupied two zones of its neighbor, Green.
Another neighbor, Yellow, is covertly providing support and shelter
to Red leadership. Blue is mounting an air campaign to compel Red
to withdraw from Green, to deny it the capability to attack its other

neighbors, and 1o prevent it from wransferring C° capabilities or
materiel to Yellow.

The illustrative biases are the following:

Habit bias (choice). A Bayesian-net model for inferring Red
command leadership intent requires the air operations center
staff to enter almost a hundred subjective probabilities about
Red’s response to stimuli. In a previous campaign (against a
much different enemy), the (Blue) JFACC had a successful
experience with the same model, in which a value of 0.2 had
been entered for all the probabilities, so he instructs the model
operator to do the same in this case. Habit is an extreme mani-
festation of bounded rationality—choosing an action because it
has been used previously.

Regression bias (adjustment). Development testing suggests
that a newly deployed bomb will hit within 5 m of the aim-
point, on average, 85 percent of the time; it is configured to be
carried by two different aircraft types, each carrying one bomb,
with equal accuracy expected from each. On Day 1, aircraft-type
A delivers 100 bombs, with 80 hitting within 5 m; type B deliv-
ers 200 bombs, with 180 direct hits. The next day’s targets will
require an estimated 90 direct hits. Impressed with the bomb’s
performance when delivered by type B, the JFACC dispatches
100 sorties of the second aircraft type, expecting a 90 percent
strike rate. He has ignored the likely regression to the mean—if
the aircraft are equally accurate, on average, then the type that
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performed better the first day will not do so consistently thereaf-
ter.

Completeness bias (confidence). A campaign model provides a
prediction of Blue-aircraft Day 1 losses for three candidate
MAAPs; it assumes canonical values for Red air-defense capabili-
ties, based on the types and ages of Red’s weapons, although the
model is capable of higher-resolution estimates with inputs on
manpower and weapons maintenance. The model outputs best
estimates of 3.04, 3.41, and 2.93 losses, respectively, with 90-
percent confidence intervals of +0.16, 0.22, and 0.16. The
JEACC perceives these apparently precise estimates as definitive
and curtails the search for more data to inform the decision. An
apparently complete set of data inspires undue faith in the qual-
ity of the inputs and assumptions that yielded it. Had the dis-
play read -3, ~3% , and -3, the JFACC would probably have
sought additional input data for higher-resolution calculations.
Framing bias (presentation). A Monte Carlo evaluation of a
campaign model compares two MAAPs, each using 100 ground-
attack aircraft; for the first plan, the model predicts 95 aircraft
surviving Day 1, 85 surviving Day 2, and 70 surviving Day 3;
for the second plan, 100 are predicted to survive Day 1; 90, Day
2; and 60, Day 3. The JFACC chooses the first option. Prospect
theory suggests that he is risk-averse with respect to gains (sur-
vival rates) and risk-seeking with respect to losses; if the out-
comes were expressed as losses (fatality rates), he would likely
choose the second MAAP.

Hindsight bias (memory). On Day 6, Blue begins to attack
fixed ground targets in one occupied zone of Green, in an effort
to compel the occupying Red forces to leave, either of their own
accord or under orders from higher-level Red leaders. The ATO
calls for a total of 24 500-Ib precision-guided bombs to be
dropped on 18 different targets. After one bomb is dropped on a
munitions depot in an abandoned village, the occupying forces
retreat in haste from the entire district, leaving behind their
artillery. Pleased with the effects achieved with a single well-
placed bomb, the JEACC is confident that he had predicted this
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outcome and that it could hardly have turned out otherwise. He
revises the next day’s ATO for attacking the other occupied
zone, without seeking more information on why the Red forces
fled.

Base-rate bias (statistical). On Day 8, the JFACC receives
credible intelligence that three men in tan uniforms are in a
white Jeep with a black roof, on the highway heading to the
border with Yellow. A knowledge-based DSS gives a high likeli-
hood that three wanted Red officials fit the description in the
intelligence; the commander dispatches a missile-equipped
drone to find and destroy the vehicle and gives firing authority
to the drone operator. The JFACC has ignored (or not sought

out) the base-rate data—that most of the cars in the area match
the description in the intelligence.

In these examples, DSSs are explicitly implicated in the habit,
completeness, framing, and base-rate biases—the format of the DSS
output, the user interface, or the mere fact of employing the DSS
stimulates or amplifies the JEACC’s propensity to judgmental biases,
none of which are clearly benign. More careful design of the DSS
could mitigate some of these suboptimal judgments without impos-
ing undue hardships on the JFACC’s own decisionmaking style. In
the cases of regression and hindsight bias, the JFACC draws possibly
biased inferences from valid statistical data and recent observations; in
the regression-bias case, a DSS that monitors the data being collected
could generate a warning not to misinterpret short-term deviations
from average performance. The hindsight-bias case presents a thorn-
ier problem, as it is not a matter simply of appropriate data display
formats or monitoring calculations: A debiasing DSS would have to
force the JFACC to consider alternative explanations for what he
observed; various strategies of this sort have been found to at best
reduce hindsight bias, and recent studies suggest that they can back-

fire and reinforce biased judgments (Sanna, Schwarz, and Stocker,
2002).



APPENDIX B

Rethinking Families of Models:

Background

The value of having a model family is suggested in Figure B.1. The
figure includes not only models and simulations, but also human
games and field experiments. In the figure, light is “good” and dark is
“bad,” so analytical models are depicted as having low resolution,
good agility, and breadth for analysis; rather good applicability to
decision support; and poor attributes for integration, phenomenol-
ogy, and human participation. In contrast, field experiments have
minimal analytical agility or breadth, are not designed for decision
support, and are very good for integration and direct human partici-
pation. The point, of course, is that the various tools complement
each other.

Analytical organizations are often sizable and can therefore
aspire to having an entire suite of appropriate models and war games.
Ideally, all the family members would have a known relationship to
one another, and some would be cross-calibrated using all available
data on the subjects of interest. In fact, some military organizations
have had model families for many years, and in some cases they have
established relatively routine procedures for calibrating upward. The
quality and meaningfulness of the calibrations have varied considera-
bly over time, but the point is that the idea of model families is

1 A preliminary version of this appendix was published as Davis, 2004. The author acknowl-
edges very helpful discussions with colleague Don Stevens.
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Figure B.1
Relative Strengths of lllustrative Family Members
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hardly new or controversial. For an early example, see Chapter 5 of
Hoeber (1981), which describes TAC WARRIOR and the lower-
level models that fed it. See also Hughes (1989) and chapters on air,
ground, and sea models in Payne (1989). For many years, the
German organization IABG maintained an excellent hierarchy of
models (Schmitz, Reidelhuber, and Niemeyer, 1984). Currently, the
Army’s Center for Army Analysis uses detailed models to develop
killer-victim scoreboards, which are then used as data structures in
RAND’s Joint Integrated Contingency Model (JICM) (which has
supplanted the venerable CEM). Both RAND and Air Force Studies
and Analysis use the BRAWLER model of air-to-air engagements to
calibrate more-aggregate-level models, such as Thunder, Storm,

START, and JICM. Again, then, the basic idea of model families is

not new.
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Difficulties in Developing and Maintaining Good Model
Families

Although the idea behind model families is old, developing such

families has been difficult, for several reasons:

Heterogeneity

Merely collecting models does not a coherent family make. A major
problem is heterogeneity in representation, formalism, and substance.
Many of the models thrown together as a family have been designed
in different paradigms, coded in different languages, and run on
computers with different operating systems and input/output facili-
ties. The concepts and names embedded in a given model may have
ambiguous relationships to those of other models. Each model and its
database depend on numerous assumptions, which may be implicit or
poorly documented. Dealing with heterogeneity was discussed as a
grand challenge in a recent Dagstuhl workshop (see the report of the
Modeling and Simulation Methods Working Group, Fujimoto,
Lunceford, Page, and Uhrmacher, 2002).

Management

Although an organization may have viewgraphs extolling the virtues
of its model family, the reality may be that different suborganizations
are responsible for the various members and may have very little to do
with one another. In other organizations, lip service may be given to
the desirability of model families, but in practice, virtually all of the
available funds go into the organization’s core activity, which may be,
for example, high-resolution simulation to support experimentation.
This may reflect limited budgets and high buy-in costs for high-
resolution modeling (e.g., the systems that have evolved from
DARPA’s early SIMNET work). Concern about such problems was
recently expressed in a National Research Council review of naval
experimentation (National Research Council, 2004).

Another class of historical management problems is the rejection
by analytical organizations of qualitative factors and other manifesta-
tions of what the analysts see as nonscientific reasoning. Some of the
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attitudes have been intellectually based, while others have probably
reflected a desire to cloak work in alleged “objectivity” and assure an
audit trail to “authoritative algorithms and data,” even when there has
been no basis for confidence in the results. Often, soft information is
actually better than hard data, a fact that becomes important in fam-
ily-of-models work. Until quite recently, however, U.S. military
organizations were extremely unwilling to allow model-based analysis
to consider the manifestly low quality of some adversary forces,
despite the testimony of history and regional experts.

Sociology

As discussed elsewhere (Davis and Blumenthal, 1991; National
Research Council, 1997), the individuals who work on different
kinds of models, simulations, games, and experiments typically are
members of disputatious tribes. Those skilled at low-resolution
exploratory analysis in support of higher-level systems analysis, for
example, may be viewed with suspicion by those who work with
entity-level simulation and are sensitively aware of the many instances
in which details matter. Warfighters may be skilled at war gaming but
look askance at models and simulations that omit much of what they
believe is crucial or interesting. The ill feelings are reciprocated.
Those doing systems analysis may regard those using detailed simula-
tions as hopelessly lost in the weeds and may see war gaming as a
merely interesting and nonrigorous activity, often with dysfunctional
and illogical doctrine applied mindlessly. Quite aside from unfortu-
nate “feelings,” the people who excel at high- and low-level analysis
often have very different skill sets and intuitions.

Science and Technology

The underlying military science in a subject area may not be under-
stood, the theory of how to correctly cross-calibrate different models
may not be understood, and—even if these are non-problems—the
tools for relating and cross-calibrating models may not exist. The
result, then, may be little more than observing some high-resolution
runs, writing down some outputs, musing a bit, and resetting some
inputs to a low-resolution model—more in the manner of getting a
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rough windspeed measure by holding one’s finger up in the air than
of anything more respectable. The tools for multiresolution modeling
and cross-calibration of models do not currently exist for general, eve-
ryday use, although there have been a number of recent research con-
tributions to tools (Haag, Chou, and Preiss, 2002; Treshansky and
McGraw, 2002).

Another class of science and technology problems relates to the
difficulty associated with representing decisions and behaviors. It
remains unclear how best to approach agent-based modeling or how
to build tools to make doing so easy. An illustrative issue goes as fol-
lows: On the one hand, agents designed top-down with well-
controlled, situation-dependent rules or continuous algorithms may
be easy to understand, but they have limited potential for learning,
adaptation, and “surprising behaviors.” On the other hand, agents
designed more bottom-up, with simple behavioral rules that lead to
different “emergent behaviors” at higher levels, may generate out-
comes that are difficult to understand and to investigate rigorously.
Which approach is better when? And can a synthesis be achieved?
Many other issues can be seen in diverse problem domains (Sanchez
and Lucas, 2000).

Despite problems, progress is being made, military applications
have been reported (Bullock, Mclntyre, and Hill, 2000), and many
items from the Marines’ Project Albert and other sources can be
found online, e.g., at http://www.cna.org/isaac/on-line-papers.htm.
Future models and simulations will almost certainly make consider-
able use of agents.

Tentative Principles for the Next Round

Without elaboration, the following tentative principles may apply for
an organization contemplating developing a new model family or
substantially updating what it has.
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Managing with a Portfolio Approach

As mentioned above, organizations sometimes spend all the available
funds on one aspect of modeling and simulation (e.g., entity-level
simulation). If model families are to be developed and sustained,
however, a portfolio approach is necessary, one in which managers
worry about “balance,” rather than squeezing the last increment of
value out of a particular class within the family. These approaches are
contrasted in Figure B.2. In the approach on the left side, all funds go
into simulation, and almost all of that into detailed simulation. A bet-
ter approach is to have a portfolio of activities, as illustrated on the
right side. Even a very small group (one to three hot-shot analysts)
using small, simple methods might greatly extend the organization’s
ability to respond to high-level officials and see forests for trees. This
effort would benefit from appropriate metamodeling to connect high-
resolution work to low-resolution work, which might require a com-
parable level of effort. A similarly small investment in war gaming
might pay big dividends in the quality of work and the connectivity
to warfighters. And finally, the balance between maximally complex
simulation and smaller simulations that are more focused on problem

Figure B.2

An lllustrative Shift to Having a Portfolio of Models, Simulations, and
Modular and Perhaps Composable Systems

Complex Complex
simulation simulation
95% Simple 60%
simulation
10%

\%\\\
simple Simple \\\\

: : analytical
simulation vt

10%
5% ’ \évaan:'ng Meta-
! modeling
10% 10%

RAND MG360-8.2



Rethinking Families of Models 109

areas (e.g., countering maneuver with joint fires) would likely be
highly desirable. The smaller simulations might be separately devel-
oped or, better, the result of using only some modules of more-
complex simulations.

How big need the whole be, and how much larger (if any)
would funding need to be for the family-of-models approach? The
answer, regrettably, would be highly organization dependent.

A given organization, working within its own mission area and a
relatively stable relationship to other organizations, should seriously
consider investing in new developments that will make its future
models modular and perhaps composable. Models designed in an
appropriately modular way would facilitate focused and simplified
work (e.g., turning off unnecessary complications from other hori-
zontally linked components) and would also facilitate cross-
calibration. Such model development, however, will be a major
undertaking over a period of years. The issues associated with model
composability are discussed critically in a recent study for the Defense
Modeling and Simulation Office (Davis and Anderson, 2003).

Multiresolution, Multiperspective Models

If undertaken from the outset with the goal of multiresolution, multi-
perspective modeling (MRMPM), by which is meant the ability to
run models using inputs at different levels of detail, new develop-
ments can generate highly flexible models with considerable built-in
ability for zoom-in and zoom-out. This cannot be accomplished
comprehensively, because of interactions among variables, but a rela-
tively few discrete efforts to build in such MRMPM are both feasible
and likely to pay high dividends (Davis and Bigelow, 1998). Signifi-
cantly, if asked to do so at the outset, designers are in a good position
to work out cross-level calibration procedures. They typically under-
stand the issues better than someone who comes along to use the
model months or years later. The mechanisms for MRMPM may be
simple and even crude—e.g., attaching simple multipliers that allow
one to scale related sets of inputs up and down together, thereby
reducing the degrees of freedom in exploratory analysis—or they may
be much more extensive.
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Designing with CAS Concepts

The characteristics of CAS are usually given as (1) sensitivity to initial
conditions (and other exogenous events in the course of time); (2)
nonlinearity, including discontinuity; (3) “nearly decomposable”
hierarchies; (4) agents, meta-agents, and adaptation; (5) aggregation
and emergent behaviors; (6) self-organization and phase transitions;
and (7) flow, open systems, nonequilibrium, and diversity (Davis,
1997).

Without attempting to summarize the arguments here, let it suf-
fice to note that the following are highly consistent with the lessons

learned from CAS theory:

* Because of nonlinearities and sensitivities, models should be
designed to support exploratory analysis rather than the search
for a classic optimal solution.

Multiresolution modeling within a given model or simulation,
when accompanied by the inclusion of adaptive agents (e.g.,
decision models representing commanders at different levels),
will often be necessary to capture aspects of learning, adaptation,
self-organization, and phase transitions. This may be achieved in
a single self-contained model or by dynamic compositions.
Dealing with qualitative and sometimes fuzzy factors is often
essential and natural in representing the behavior of agents and
the characteristics of uncertain, open, nonequilibrium systems

(Davis, 2001).

It is also worth noting a misconception that has served as a red
herring in the past: that salvation in modeling and simulation (M&S)
consists in detailed bottom-up modeling (millions of entities on the
battlefield, all well described). Many of the most celebrated insights
from CAS projects to date, in many fields, have come instead as the
result of emergent behaviors caused by a small set of elemental
behaviors. The entities in question (e.g., automobiles on the highway
or armored vehicles on the ground) need not be described in great
detail in order to manifest aggregate behaviors of interest (e.g., emer-
gence of swarming tactics by infantry). What is perhaps most inter-
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esting here is that resolution is not the point. Yes, it is essential to
model at multiple levels of organization and to use agent techniques
to insert elemental behaviors, but other details may be irrelevant,

depending on the problem.

Designing Around Modern Networking and CISR

Designing a next generation of M&S around networking and C*ISR
will require as big a shift as the items above. Unfortunately, C? has
often been assumed perfect or reflected only through some simple
static parameters such as delay times for communications, perhaps set
differently depending on whether a particular satellite system had
been bought. That is not an acceptable representation when asking,
for example, about how to measure information dominance or, bet-
ter, asking how long it will take the United States to do a “Scud
hunt” in the next war, as a function of what systems are procured and
deployed, how they are operated, and the quality of networking. How
to design the new class of models is not a settled question. Figure B.3
(taken from an article by Cebrowski and Garstka (Cebrowski and
Garstka, 1998)) illustrates how different a network-centric perspec-
tive may be; its implications for modeling and simulation are unclear.

Selected Technical Issues

The remainder of this appendix comments in somewhat more detail
on four technical issues of particular importance to the rethinking of
model families. These relate to multiresolution, multiperspective
modeling; cross-level calibration and the related problem of determi-
nistic versus stochastic modeling at high levels; metamodeling; and
making human war gaming serve more-analytical purposes.

Achieving Multiresolution Capabilities

As defined here, multiresolution modeling (MRM), or variable reso-
lution modeling (VRM), allows a user to make inputs at different lev-
els of detail, depending on his needs. Suppose, for example, that one
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Figure B.3
One Depiction of the Network-Centric View
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of the variables of his higher-level depiction is A in Figure B.4. How
does the value of that variable get set? At one extreme, A is simply an
input parameter. In a multiresolution model, A may be input directly,
but the user has the option of computing it from more-detailed
information. This can be done in several very different ways. Perhaps
A is fully determined as a function of B1, B2, and B3, the values of
which can be input instead of a single value for A. Or, for some pur-
poses, A may also be considered to be a function of additional factors
represented by B4 and B5, which would ordinarily be omitted. These
might relate, for example, to logistical issues on the battlefield or to
operating with too few ballistic-missile interceptors to launch doc-
trinal salvos at each incoming attacker. Such considerations would
only sometimes be of interest.

Figure B.4 also indicates that B3 might itself be given multi-
resolution features: One could enter B3 directly or compute it from

C3 and C4. On the lower left, dashes indicate that inputs for B1 and
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Figure B.4
Alternative Approaches for Achieving Multiresolution
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B2 may be informed by offline study of C1 and C2, which may be
variables of an entirely different model. We see, then, that mul-
tiresolution capability can be achieved by building it into a single
model, by modular design, by offline calibration, or by some combi-
nation of these methods.

Deterministic Versus Stochastic Representations

A recurring and rather deep issue in multiresolution work is whether
higher-level models should be stochastic, or whether it is legitimate
for them to be deterministic. This has been discussed frequently over
the years, but it is worth rethinking,

Consider first the situation in which one has a high-level (low-
resolution) variable A in Figure B.5 (note that the letters and nodes
are different from those in Figure B.4), which might be just input
directly as a parameter, but which instead is to be calculated by call-
ing a function B that in turn runs a detailed model before setting the
value of A in one way or another. That is, the detailed model is run as
a subroutine.
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Figure B.5 indicates schematically four different ways of pro-
ceeding. In Panel 1 (top left), the low-resolution variable A is set at a
point in time by calling B (and including, in the call, some informa-
tion on the situation for which a value is needed). B may look at the
information and run the detailed model for a “representative” exam-
ple. That is, B has numerous high-resolution inputs to specify but

Figure B.5

Alternative Ways to Use High-Resolution Information in a Lower-Resolution
Model

Request, A Request, A

state state

data A "representative” data A "representative”
JL parameter value L parameter value

ﬁ Results for a

Results for a
"representative”

random-sample

b ) case
il
1
1
1 2
Request, A Request, A
state . state " "
data ﬂ An appropriate data ﬁj %arame;cer in
"average” L eformofa
result — random variable
B

Results for N
cases

3

RAND MG360-8.5

Results for N
cases

4



Rethinking Families of Models 115

chooses values that seem “representative” for the state in which A is to
be evaluated.

In Panel 2, B instead “rolls the dice” to specify the various high-
resolution variables, runs the model once with these inputs, and
reports back the result, which might or might not be typical. In Panel
3, B runs N different cases, with different dice rolls, and then com-
putes some appropriate value to return to A. This may be a simple
average or something more sophisticated that takes into account other
aspects of the low-resolution model’s state and how the variable A is
affecting outputs of interest. In that case, B is serving as a kind of
“projection operator.” Finally, in Panel 4, B reports back a distribu-
tion function for A’s value. For example, it might report back, “Use
the number 4*R, where R is a normally distributed random variable
with mean of 1 and standard deviation of 0.5.”

To reiterate, the choices are (1) return a value for A based on a
high-resolution run conducted with allegedly representative inputs,
(2) return a value for A based on a high-resolution run conducted
with randomly chosen inputs, (3) return a value based on N runs and
some kind of processing (e.g., averaging), or (4) return a random
variable as the value of A.

Obviously, there are major implications for the performance and
complexity of the overall model, depending on which approach is
taken. Most analysts quickly conclude that they do not want to liter-
ally call complex, detailed models as subroutines. An alternative is to
run the big model offline many times and generate various data
tables. That is, any of the four approaches could be accomplished by
running the big model as a subroutine or merely by incorporating
data tables based on offline runs. For example, in Panel 2, B would
look at a table representing a set of N randomly generated outcomes
for the situation in question and would roll the dice to decide which
of the outcomes to report.

The problem with this approach is that the tables would repre-
sent a preconceived construct of cases. If the simulation is being run
with different assumptions or modified algorithms, the low-
resolution states may no longer be characterized well by the original
cases. Suppose, for example, that a new C*ISR platform were intro-
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duced in the low-resolution model. The presence or non-presence of
that super-sensor might not have been anticipated as an issue when
the big model was run to develop data tables for various cases. To
make this less abstract, consider using a killer-victim scorecard devel-
oped for only four cases: meeting engagement and attack on prepared
defenses for each of two terrain types, assuming equal information in
other respects. If Blue is now given a super-sensor that sees into and
through the prepared defenses, the killer-victim scoreboard will be
quite wrong. In contrast, it is possible that if the detailed model were
invoked as a subroutine, it might have knobs and switches to reflect
the new situation. Lookup tables, then, have both strengths and
weaknesses.

Having discussed matters in the abstract, let us now look at an
example of MRM and alternative approaches. Consider calibrating
upward from data generated by detailed models of air war. Assume
that we have detailed engagement- and mission-level models. The
former determines losses from an engagement configuration of, say, N
Red and M Blue aircraft, which start the engagement in an orienta-
tion (e.g., nose-on-nose). Results depend on absolute and relative
capabilities of the respective aircraft, including both lethality and sur-
vivability factors, avionics, and maneuverability. Ideally, results
should also be parameterized by pilot quality and mental status (e.g.,
aggressive versus timid). The data from the mission-level model
determine the distribution of battle configurations and orientations.
The mission model’s outputs may depend on something like the rela-
tive information status, as well as the numbers of Red and Blue air-
craft and the sides’ intentions and doctrine.

Someone constructing a high-level (low-resolution) model
might aspire to tracking daily losses of Red and Blue over time, and
doing so with a minimal set of input parameters and values. He
might hope to characterize inputs simply with Red and Blue force
levels, sortie rates, encounter probabilities per sortie, and relative kill
coefficients (or those and survivability coefficients). In that case, the
model might be a simple Lanchester-square law or an alternative sug-
gested by colleague Glenn Kent, called the exponential approximation.
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One version of that has Red’s losses AR for a particular time period
given by
KBGB

AR = (engagements/unitt ime) G, (1 - ¢S5 YAz,

where the first factor is the number of engagements per unit time,
which depends on force densities, geography, and complicated C’
issues not discussed here, and where G, and G are the number of
Red and Blue in a given engagement, Sz, is a “stealth factor” for Blue,

and Kjis a kind of kill potential. The quantity
KBGB

GR (1 _ eStBGR )

is the number of Reds killed by Blue in a given engagement.

The calibration problem, then, would appear to be finding val-
ues for K, Ky, S;, and S, and if only Blue is assumed to have stealthy
aircraft, S, can be assumed to be 1. The difficulty is that finding
values of the remaining three parameters requires averaging outcomes
of the detailed models. But how should one calculate those averages?
And besides, should not the resulting K}, K, and S, be stochastic,
because of all the hidden variables being averaged over?

The unclassified examples that follow are based not on results of
actual high-resolution runs, but on a set of synthetic data (tables such
as might have come from a high-resolution model) that were at least
superficially plausible: Red and Blue engagement losses for each of
four configurations (one Blue to four Red, two Blue to four Red, four
Blue to four Red, and one Red to four Blue), each of nine relative
orientations (all the combinations of nose, side, and tail, such as nose-
tail for an engagement beginning with Blue on Red’s tail), and three
values of Blue’s “stealth parameter,” which adjusts the vulnerability of
Blue as a function of orientation. Thus, engagement configuration
and orientation are treated in some detail, but the stealth factor is
treated more crudely. It is not uncommon for data from “high-
resolution models” to have such a mixture of detail and crudity,
because not all the combinations of potential interest can be run.
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A distribution of initial engagement orientations is a function of
the relative information status, which was considered to have five dif-
ferent states (Blue dominant, Blue edge, even, Red edge, Red domi-
nant). If the data were real, the distribution would also depend on the
detailed capabilities of Red and Blue aircraft for maneuver; detection,
tracking, and fire-control; pilot quality and morale; weapon numbers
and capabilities; and so on. As is usual (but not right), none of these
matters are discussed here. That is, the abstraction issues will assume
that these matters are constant and reflected in the dara.

The results of the experiment—which, in the interest of keeping
this appendix to a reasonable length, are not discussed in depth
here—illustrate generic problems and principles:

* What “truth” are the results calibrated from? The biggest
error in attempting to calibrate upward may be to assume that
the high-resolution models are “correct.” In practice, they often
do not deal correctly, if at all, with key issues (e.g., pilot quality
and aggressiveness or the frequency of engagements as a function
of strategy and geography). When this is the case, the upward
calibration may not be realistic, and the “calibrated” coefficients
should still be treated as uncertain parameters, albeit with a “peg
point” to nominal detail.

Not all aggregations are equal. The next biggest error in
abstraction may be that of adopting “naive aggregations,” such
as the one described above (assuming Lanchester equations at
the top level), which makes no explicit mention of the relative
balance of information or the configurations of battle. These
factors matter so much and are so uncertain that they deserve to
appear even in aggregate-level models. Aggregate should not
mean dumb.

Proper aggregations may require anticipation of context. It is
superficially appealing to do aggregations on standalone forces,
but the worth of a weapon system or unit depends on the con-
text in which it finds itself. Suppose that at the aggregate level,
one reasoned that Red’s information superiority would mean
that one-half of the engagement orientations would be against
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Blue’s tail and the other half would be “even” cases, such as

nose-on-nose, as distinct from Blue-nose-on-Red-tail. That

would underestimate the value of Red’s information, because in

the real world, Red would try never to engage Blue except from

the tail or side. Volitional nose-on-nose engagements would be

| suicide against a stealthy Blue. The moral here is that upward

| calibration requires various mappings that require understanding

of context. Analogous problems in characterizing ground forces

with static measures led in earlier years to “situational force
scoring” (Allen, 1995).

* Point values should reflect underlying distributions. If, none-
theless, point values are used for the kill coefficients, then it is a
serious error to use the allegedly most likely or allegedly typical
configuration and orientation unless there is reason to believe
that these matters can be tightly controlled. The coefficient val-
ues for these cases are often peak values of distributions with
long tails. Thus, point values, if used, should be something like
means or medians of the underlying distributions.

* Aggregate-level stochastic calculations are not usually
worthwhile (given the caveat of the preceding item). There is
usually little analytical benefit to making the aggregate-level kill
coefficients stochastic (Hughes, 1994). Rather, it is more
straightforward and insightful to show results parameterizing the
kill coefficients and to label the curves so as to indicate circum-
stances to which they apply (e.g., Blue information dominance
versus equal Red and Blue information). In the illustrative
problem, this could happen if the aggregate model still keeps
track of information status, the correct value of which is highly
uncertain.

But sometimes stochastic analysis is important. Stochastic aggre-
gate-level calculations are sometimes valuable—for example, in
dramatizing a bifurcation of outcomes that is smoothed over by
expected-value calculations. Using the Lanchester-square aggregate
model of air war, if the aggregate-level coefficients suggest an
exchange ratio of 3, then if the ratio of Red and Blue aircraft is 3:1,
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the model will predict a mutual drawdown. A stochastic treatment
would predict a bimodal outcome in which either Red or Blue wins
quickly and decisively, with equal likelihood. The moral here is that
one should not depend on expected-value calculations, even for quali-
tative insight, near those alleged breakeven points. There are many
other instances as well in which stochastic calculations are important
(Horrigan, 1991; Lucas, 2000).

Most of these points can be seen in Figure B.6, which shows the
force ratio (Red to Blue) on Day 2 as calculated in a number of dif-
ferent ways, assuming an initial force ratio of 4:1 and the synthetic
data mentioned above. The leftmost set of bars is the “exact” calcula-
tion. The next set is based on a “smart” aggregate model that includes
information status as an explicit variable. Moving rightward, the next
set is based on a standard (naive) aggregate model in which the kill
coefficients have been given nominal point values based on detailed
engagement-level results for allegedly typical cases (in this case, nose-
on-nose engagements). The next set of bars is a variant in which the
point values were chosen as the means or averages over a distribution
of engagements (assumed here to be Blue superior, even, and Red
supetior in the proportions 0.5, 0.26, and 0.24). Finally, the right-
most set of bars shows the mean of a stochastic calculation that does
not depend explicitly on information status but has random fluctua-
tions reflecting that hidden variable. The very last bar on the right is
different from the others; it merely shows the size of the standard
deviation for the stochastic calculations.

All but the first set of bars come from aggregate models, but
results vary greatly. Moreover, it is obvious from the sensitivities that
information status should be an aggregate-level variable. Anything
that smoothes over it is at best a naive aggregation and possibly a very
bad one. By comparing the two sets of bars based on “point calcula-
tions,” one sees how assuming a “nominal” case that is actually a very
favorable case can bias results substantially. Setting the kill coefficient
to be the mean value of the underlying distribution does a better job
if, in fact, there is a distribution of information statuses and one can
estimate it. The mean of the stochastic calculation is even larger
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Figure B.6
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because that calculation includes cases in which Red wins decisively
(very high force ratio, even by Day 2, as indicated by the first two sets
of bars for the case of Red superior). Note that the standard deviation
of the stochastic calculation is huge. This is because there is a bifurca-
tion: Either Blue wins decisively (very small force ratio) or Red wins
decisively (large force ratio). This insight, however, is probably better
seen from the “smart aggregation” that maintains dependence on
information status. Bothering with the stochastic calculation is not
obviously useful. In contrast, the stochastic calculation is a great deal
more informative than the probably more usual point calculations.

Metamodeling, Motivated and Otherwise

The previous section discussed calibrating upward from a detailed
model to a lower-resolution model. An overlapping but philosophi-
cally separate track has been that of building statistical metamodels.
One runs the detailed model, collects data, and finds a statistical
model that represents reasonably the detailed-model results, prefera-
bly with many fewer parameters to be varied. The result is called a
statistical metamodel, response surface, or repro model, depending on
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one’s community. Building such statistical metamodels often seems
attractive, because it does not require deep thinking or theorizing
about the substantive problem: It can be an exercise in applying sta-
tistical tools to some “data.” In some cases, the results are quite use-
ful, and in some cases the approach can yield insights about what
variables are and are not important or what composite variables
should be seen as important. The approach, however, has some seri-
ous drawbacks for analysts and the decisionmakers they serve. In par-
ticular, the statistical metamodels may not be understandable. They
may give predictions but few insights or explanations. They may also
be erroneous in subtle “corners” of the problem space that happen to
be of particular importance. It is much preferable, in our view, to
develop “motivated metamodels” that build in a reasonable structure
for the metamodel, based on “physical reasoning” and concern for
problem context, such as the possibility of nonlinear effects arising
from the existence of critical components in a system, each of which
must perform adequately to avoid system failure. If one begins with
such a tentative structure and then applies the same statistical tech-
niques, the result can be a very good metamodel that also conveys a
story. This approach is discussed in detail in Davis and Bigelow
(2003). Other approaches to statistical metamodeling are also being
studied (Fall and Plotz, 2001; Haag, Chou, and Preiss, 2002;
Trevisani, Sisti, and Mayhew, 2002).

Analytic War Gaming

The last special topic to be discussed here is how to make human war
gaming more “analytic.” This deserves an entire paper, but the key

ideas suggested here, which relate to Figure B.7, can be summarized
as follows:

* Design the games as vignettes, with relatively well-described
situations.

* Use competing teams (e.g., U.S., UK, Israel, Poland) to see
diverse tactics and assumptions.

* Encourage the teams to explicitly develop contingent plans (e.g.,
with branches and sequels).



Figure B.7

Rethinking Families of Models

A Process for Using Human War Gaming Analytically

123

Questions for follow-up research

RAND MG360-8.7

Working tools with knowledge incorporated
* New documented modules in basic models
* Documented “interface” models
¢ "Cases” and parameters to highlight in analysis

For each of
many vignettes:
1. Vignette
oSituation
Experimental N Control *Objectives
deSIgn team 2. Response Human play
to queries
Queries about
situation, constraints, Decisions, with
capabilities branches and
Mini-models, sequels; brief
mixing quali- rationales
tative and .
Design to quar]titati\(e Sketch of logic
implement cons@eratlons; table, key factors,
concepts in questions for Modeli .rules o,fthumb,
code, later research odeling ‘lf-only 5. After-action
tables,...; discussion
implementation

* Protect the teams organizationally, perhaps by embedding them

in independent groups such as FFRDCs or even war colleges, or
the U.S. Joint Forces Command (JECOM).

Record planning factors and reasoning used during team play,
recognizing them as the germs of “models” that can later be
formalized, whether quantitatively or qualitatively (Davis, 2001,
2002b, 2003). Accept overarching “soft” factors.

Use Red teams, both to better appreciate different ways of
assessing the situation and defining objectives and to draw upon
expertise about adversary military doctrine. Red teams apply
well to counterterrorism as well, as is being demonstrated in a
study led by James Miller (Murray, 2002; Sinnreich, 2002;
Murdock, 2003).

* Follow up with analysis and modeling.
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Analysis should come at the beginning and the end (Figure B.7).
People skilled in capabilities analysis should design the war games and
vignettes to cover the space adequately (perhaps with a combination
of experimental design and M&S greatly narrowing the number of
cases). Analytically inclined people with an appreciation of, and open-
ness toward, soft factors should record intragame logic and then
develop summary qualitative models. Subsequently, modelers should
explicitly relate the variables of the human games to variables of mod-
els and simulations—adding variables to the latter as necessary, e.g.,
using “interface models.” Much more can be done in these respects
than is commonly appreciated, at least with some models. For exam-
ple, in the form of colleague Carl Jones’ “J-language,” JICM includes
numerous “hooks” for qualitative factors and allows for contingent

strategies that can be specified by the analysts rather than using hard-
wired databases developed months eatlier.

Conclusions

Much more can and should be written about how to develop families
of models and games, but this monograph has at least identified ideas
that may be useful to an organization contemplating doing so. They
include (1) taking a portfolio approach that encourages maintaining a
balance among low-resolution agile models, detailed simulation, war
gaming, and the like; (2) designing with exploratory analysis and
zoom capabilities in mind from the outset; and (3) assuring that
CISR, networking, and adaptive behaviors (e.g., as obtained with
“agents”) are central concepts of architectures. At the next level of
detail, our admonitions include suggestions for multiresolution mod-
eling, for both deterministic and stochastic analysis; the use of meta-
models, particularly motivated metamodels; and using human war
gaming analytically to shape and inform subsequent qualitative and
quantitative models and smarter agents.

All of this has many implications for M&S technology, which is
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needed, for example, to help in aggregation, disaggregation, meta-
modeling, explanation, composition, and data mining from war

games.




APPENDIX C
Further Discussion of Judgmental Bias and DSS

The main text discusses biases and the potential for reducing the bias
of decisionmaker judgments through the use of DSS. Much more
could be said, however, and we note a few points here.

Reasons for the Superiority of Frequentist Depictions

Neuroscience suggests that people have a collection of mental mod-
ules for various cognitive functions, including reasoning, that perform
better with information in formats that ancestral humans adapted to.
Humans have had considerable direct experience with “natural” fre-
quencies (“the river flooded four years out of the last 20”), whereas
probabilities are considerably more abstract (“the probability of the
river flooding in any year is 0.2”) (Gigerenzer, 1994). The frequency
formulation, in this case at least, contains more contextualizing
information, in both the numerator and the denominator, and fits
better with cognition. As noted in the text, however, this perspective

is disputed.

The Subset Bias, Conjunction Bias, and Sensemaking

With the “conjunction fallacy,” people estimate the likelihood of an
object having two independent properties as higher than that of its
having at least one of them. A common illustration is the “Linda
problem,” in which several of Linda’s attributes are given, and sub-
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jects are asked to rank-order statements about Linda according to
their probability. Most subjects rank “feminist and bank teller”
higher than “bank teller,” even when it is made clear that choosing
“bank teller” does not rule out “feminist also” (Tversky and
Kahneman, 1983). Once again, the frequentist formulation greatly
mitigates the bias. If the question is, “100 people fit the description
above; how many are bank tellers, how many are feminist bank tell-
ers?” the subset bias observed is much weaker (Fiedler, 1988).

Explanations for the subset bias vary. Specific scenarios may
seem more likely than general ones because they better represent the
way we imagine events (Tversky and Kahneman, 1983). Certainly,
war games are more salient and powerful when they include colorful
details, even though that reduces the likelihood of the scenario used
being “correct.”

The conjunctive label (bank teller #nd feminist) may also pro-
vide a more compelling pattern match to a real person, triggering the
pattern-match heuristic and thereby leading to an overestimate of
probability (Lopes and Oden, 1991). However, with a frequentist
depiction of issues, subjects may be thinking about a large sample and
may be less likely to employ a pattern-matching heuristic in the first
place.

Another argument is that even if people recognize that the con-
junction is slightly less probable, they sense that it has greater
“expected informativeness” (Bar-Hillel and Neter, 1993). We see here
the connection to storytelling, which achieves greater effectiveness in
making points by adding color and narrative. If the point made is not
really dependent upon the color and narrative but is valid, then the
enrichment is all to the good. But if one’s pattern of thought is to
look for stories, then it is perhaps not surprising if one is guilty of the
conjunction fallacy.

Although the military decisionmaking literature does not
address the subset bias explicitly, the possible relevance to operational
decisionmaking is clear. For example, a commander receiving battle-
damage assessments may infer from the fact that bombs fell where
targeted and the adversary has not maneuvered in the last 12 hours
that he has successfully decapitated the enemy and broken his C* sys-
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tem. The reality may be that the adversary commander was not in the
targets struck, that the C? system was merely inconvenienced, and
that a new ground-force maneuver is being planned for execution
tomorrow morning. In this case, then, the commander is motivated
to infer more than the data suggest and, in doing so, to construct a
more compelling story that fits his intentions, perhaps at the expense
of correctness.

The Columbia Disaster and Its Lessons

A prominent recent event highlights the potentially severe conse-
quences of judgmental biases, with special relevance to military opera-
tions. In testimony before the independent panel on the breakup of

the space shuttle Columbia, an expert advisor to NASA said that
NASA had

again fallen prey to “systemic” flaws in reasoning—such as the
creeping acceptance of poorly understood risks in operating the
space shuttle . . . despite prodigious efforts and the best of inten-
tions, [NASA] had failed to upgrade its aged database and com-
puter systems to allow it to track subtle but unacceptable trends

. . the shuttle team has been lulled by repeated successes. “I
think there’s a flaw in the reasoning of many well-intentioned
people” in forgetting that “if you've a 1 in 100 chance of risk of
an event occurring, the event can occur on the first or the last
[opportunity], and there’s an equal probability each time.”. . .
the perception within the agency seemed to be “that if I've flown
20 times, the risk is less than if I've just flown once. And we
were continually attempting to inform them that unless they’ve
changed the risk positively, they still have the same issue even

after 50 flights or 60 flights” (Sawyer, 2003).

Several judgmental biases might have been at play here, most
notably the overconfidence bias and the disjunction bias, which holds
that probability is often underestimated in compound disjunctive
problems (Tversky and Kahneman, 1974). NASA engineers and mili-

tary commanders are equally highly trained, disciplined, and respon-
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sible, and yet both are subject to a biasing organizational dynamic—
the pressure to weight observed successes more heavily than is war-
ranted. Imagine a commander deploying an innovative new platform
in combat for the first time. Development testing suggests that it
should fail in about 5 to 10 percent of its sorties against enemy sur-
face-to-air missiles. It survives its first three combat sorties; should
this success embolden the commander to rely on it more than he had
been inclined to before the first flight? Certainly not—but his inclina-
tion to do so should not be surprising. It is no challenge for a DSS to
make the apposite calculations, but to convey the results in a compel-
ling manner is nontrivial.

More generally (i.e., not limited to military applications), while
many DSSs are intended to mitigate the effects of judgmental biases,
there has been little consideration of how their use may contribute to
biased decisionmaking (a promising study of biases in the judgment
of medical patients by practitioners using DSSs is under way (Ubel,
2002)). A consideration of judgmental biases is not evident in many
discussions of military operational DSSs, even for those that account
for a variety of users’ idiosyncrasies. For instance, the Attack Opera-
tions Decision Aid (AODA) (Cho, 1999) is a tool to assist in divert-
ing air assets from missions already specified in an ATO to time-
critical targets (Hura, McLeod, Mesic, Sauer, Jacobs, Norton, and
Hamilton, 2002). While the tool is forward-deployed on airborne
platforms and used for routine targeting decisions, very high-value,
high-risk, or politically sensitive targets bring the JEACC or higher-
level commanders into the decision process. The tool both supple-

ments and supplants the commander’s own decisionmaking capabili-
ties:

AODA’s algorithms are based on operations research techniques.
A commander makes similar decisions using a heuristic approach
which, while adequate in a non-stressing (few-on-few) environ-
ment, can not efficiently handle complex situations. AODA
assesses the tradeoffs among original target value and new target
value, available weapon capability, asset survivability, and prob-
ability of destruction. AODA then provides the operator with a
list of recommended weapon target pairings.
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AODA’s algorithms require that the values of targets and assets
be captured numerically. Although subjective valuations of this
nature are made by commanders during the decision process,
they are not quantified to the level required by the decision aid.
To fully support the aid’s algorithms, commanders will have to
explicitly state the values they place on targets and assets
(Pedersen, Van Zandt, Vogel, and Williamson, 1999).

These sorts of subjective valuations (even by experts) are prone
to a broad range of judgmental biases. It is not evident whether these
potential biases are explicitly considered in the tool’s design, although
they should certainly figure in many of the other individual-level fac-
tors that influence its effectiveness.

The decision aid must meet the user’s perceived needs and
incorporate those factors that the user feels are critical to a correct
decision. It is imperative to determine what the user thinks the deci-
sion-support needs are, the conditions under which the aid is needed,
the features that are needed, and the factors that the aid’s algorithms
should consider. A decision aid should be built with a clear under-
standing of the users’ expectations and level of expertise, as well as the
operating environment.

Decision aids may support various levels of command. At low
levels, decision aids may simply help the operators to recognize a
critical situation, so that preplanned appropriate action can be taken
and important information can be elevated to other command levels.
Decision aids that support a commander responsible for the execu-
tion of the campaign plan may need to gather all the available data,
organize and present information clearly, and recommend options
that facilitate decisionmaking. A decision aid’s level of sophistication
needs to be geared to the user’s training, educational level, and back-
ground, which vary with the command level (Pedersen, Van Zandt,
Vogel, and Williamson, 1999).

With regard to the latter point, higher levels of command his-
torically have favored analytical decisionmaking over naturalistic deci-
sionmaking, which should also influence the nature and sophistica-
tion of the appropriate DSS, but ongoing advances in information
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technology are blurring the distinctions among the levels and are
causing them to merge (MacGregor, 1992).
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